Climate change effects on hydrometeorological compound events over southern Norway
Journal article, Peer reviewed
Published version
View/ Open
Date
2020Metadata
Show full item recordCollections
- Journal articles [508]
Abstract
Hydrometeorological compound events cause severe economical, societal and environmental damage, but their investigation is difficult as they occur rarely and are multivariate. Here we use 50 high-resolution climate simulations from the single model initial condition large ensemble CRCM5-LE to examine two such compound event types in southern Norway: (1) Heavy rainfall on saturated soil during the summer months (June, July, August, September; SES) and (2) Concurrent heavy rainfall and snowmelt (rain-on-snow; ROS). We compare present-day conditions (1980–2009) with future conditions under a high-emission scenario (2070–2099) and investigate the impact of climate change on the frequency and spatial distribution of SES and ROS events. We find that the probability of occurrence of SES events during the summer increases by 38% until 2070–2099 over the whole study area. The areas with the highest occurrence probability extend from the west coast into the interior. In contrast, the frequency of ROS is projected to decrease by 48% on average, largely driven by decreases in snowfall. Moreover, the spatial pattern of ROS are projected to change, with the most frequently affected areas shifting from the west coast towards the inner country. Our study highlights the benefits of single model large ensemble simulations for the analysis of compound events.