Vis enkel innførsel

dc.contributor.authorNordling, Kalle
dc.contributor.authorKeskinen, Jukka-Pekka
dc.contributor.authorRomakkaniemi, Sami
dc.contributor.authorKokkola, Harri
dc.contributor.authorRäisänen, Petri
dc.contributor.authorLipponen, Antti
dc.contributor.authorPartanen, Antti-Ilari
dc.contributor.authorAhola, Jaakko
dc.contributor.authorTonttila, Juha
dc.contributor.authorAlper, Muzaffer Ege
dc.contributor.authorKorhonen, Hannele
dc.contributor.authorRaatikainen, Tomi
dc.date.accessioned2024-06-17T07:27:37Z
dc.date.available2024-06-17T07:27:37Z
dc.date.created2024-02-23T09:34:46Z
dc.date.issued2024
dc.identifier.citationAtmospheric Chemistry and Physics (ACP). 2024, 24 (2), 869-890.en_US
dc.identifier.issn1680-7316
dc.identifier.urihttps://hdl.handle.net/11250/3134223
dc.description.abstractHere we present for the first time a proof of concept for an emulation-based method that uses a large-eddy simulations (LESs) to present sub-grid cloud processes in a general circulation model (GCM). We focus on two key variables affecting the properties of shallow marine clouds: updraft velocity and precipitation formation. The LES is able to describe these processes with high resolution accounting for the realistic variability in cloud properties. We show that the selected emulation method is able to represent the LES outcome with relatively good accuracy and that the updraft velocity and precipitation emulators can be coupled with the GCM practically without increasing the computational costs. We also show that the emulators influence the climate simulated by the GCM but do not consistently improve or worsen the agreement with observations on cloud-related properties, although especially the updraft velocity at cloud base is better captured. A more quantitative evaluation of the emulator impacts against observations would, however, have required model re-tuning, which is a significant task and thus could not be included in this proof-of-concept study. All in all, the approach introduced here is a promising candidate for representing detailed cloud- and aerosol-related sub-grid processes in GCMs. Further development work together with increasing computing capacity can be expected to improve the accuracy and the applicability of the approach in climate simulations.en_US
dc.language.isoengen_US
dc.publisherCopernicus Publicationsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleTechnical note: Emulation of a large-eddy simulator for stratocumulus clouds in a general circulation modelen_US
dc.title.alternativeTechnical note: Emulation of a large-eddy simulator for stratocumulus clouds in a general circulation modelen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber869-890en_US
dc.source.volume24en_US
dc.source.journalAtmospheric Chemistry and Physics (ACP)en_US
dc.source.issue2en_US
dc.identifier.doi10.5194/acp-24-869-2024
dc.identifier.cristin2249066
dc.relation.projectEC/H2020/646857en_US
dc.relation.projectEC/H2020/821205en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal