Vis enkel innførsel

dc.contributor.authorStjern, Camilla Weum
dc.contributor.authorSamset, Bjørn Hallvard
dc.contributor.authorBoucher, Olivier
dc.contributor.authorIversen, Trond
dc.contributor.authorLamarque, Jean-Francois
dc.contributor.authorMyhre, Gunnar
dc.contributor.authorShindell, Drew
dc.contributor.authorTakemura, Toshihiko
dc.date.accessioned2021-08-25T10:40:52Z
dc.date.available2021-08-25T10:40:52Z
dc.date.created2020-12-01T17:46:03Z
dc.date.issued2020
dc.identifier.citationAtmospheric Chemistry and Physics. 2020, 20 (21), 13467-13480.en_US
dc.identifier.issn1680-7316
dc.identifier.urihttps://hdl.handle.net/11250/2771142
dc.description.abstractThe diurnal temperature range (DTR) (or difference between the maximum and minimum temperature within a day) is one of many climate parameters that affects health, agriculture and society. Understanding how DTR evolves under global warming is therefore crucial. Physically different drivers of climate change, such as greenhouse gases and aerosols, have distinct influences on global and regional climate. Therefore, predicting the future evolution of DTR requires knowledge of the effects of individual climate forcers, as well as of the future emissions mix, in particular in high-emission regions. Using global climate model simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we investigate how idealized changes in the atmospheric levels of a greenhouse gas (CO2) and aerosols (black carbon and sulfate) influence DTR (globally and in selected regions). We find broad geographical patterns of annual mean change that are similar between climate drivers, pointing to a generalized response to global warming which is not defined by the individual forcing agents. Seasonal and regional differences, however, are substantial, which highlights the potential importance of local background conditions and feedbacks. While differences in DTR responses among drivers are minor in Europe and North America, there are distinctly different DTR responses to aerosols and greenhouse gas perturbations over India and China, where present aerosol emissions are particularly high. BC induces substantial reductions in DTR, which we attribute to strong modeled BC-induced cloud responses in these regions.en_US
dc.language.isoengen_US
dc.publisherCopernicus publicationsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHow aerosols and greenhouse gases influence the diurnal temperature rangeen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber13467-13480en_US
dc.source.volume20en_US
dc.source.journalAtmospheric Chemistry and Physicsen_US
dc.source.issue21en_US
dc.identifier.doi10.5194/acp-20-13467-2020
dc.identifier.cristin1855009
dc.relation.projectNorges forskningsråd: 244141en_US
dc.relation.projectNorges forskningsråd: 229778en_US
dc.relation.projectInternasjonale organisasjoner: JSPS KAKENHI (grant no. JP19H05669)en_US
dc.relation.projectMeteorologisk institutt: 181090en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal