Vis enkel innførsel

dc.contributor.authorHodnebrog, Øivind
dc.contributor.authorMyhre, Gunnar
dc.contributor.authorKramer, Ryan J.
dc.contributor.authorShine, Keith P.
dc.contributor.authorAndrews, Timothy
dc.contributor.authorFaluvegi, Greg
dc.contributor.authorKasoar, Matthew
dc.contributor.authorKirkevåg, Alf
dc.contributor.authorLamarque, Jean-Francois
dc.contributor.authorMülmenstädt, Johannes
dc.contributor.authorOliviè, Dirk Jan Leo
dc.contributor.authorSamset, Bjørn Hallvard
dc.contributor.authorShindell, Drew
dc.contributor.authorSmith, Christopher J.
dc.contributor.authorTakemura, Toshihiko
dc.contributor.authorVoulgarakis, Apostolos
dc.date.accessioned2021-08-11T11:03:46Z
dc.date.available2021-08-11T11:03:46Z
dc.date.created2020-11-19T19:42:02Z
dc.date.issued2020
dc.identifier.citationnpj Climate and Atmospheric Science. 2020, 3:43 1-7.en_US
dc.identifier.issn2397-3722
dc.identifier.urihttps://hdl.handle.net/11250/2767360
dc.description.abstractRapid adjustments occur after initial perturbation of an external climate driver (e.g., CO2) and involve changes in, e.g. atmospheric temperature, water vapour and clouds, independent of sea surface temperature changes. Knowledge of such adjustments is necessary to estimate effective radiative forcing (ERF), a useful indicator of surface temperature change, and to understand global precipitation changes due to different drivers. Yet, rapid adjustments have not previously been analysed in any detail for certain compounds, including halocarbons and N2O. Here we use several global climate models combined with radiative kernel calculations to show that individual rapid adjustment terms due to CFC-11, CFC-12 and N2O are substantial, but that the resulting flux changes approximately cancel at the top-of-atmosphere due to compensating effects. Our results further indicate that radiative forcing (which includes stratospheric temperature adjustment) is a reasonable approximation for ERF. These CFCs lead to a larger increase in precipitation per kelvin surface temperature change (2.2 ± 0.3% K−1) compared to other well-mixed greenhouse gases (1.4 ± 0.3% K−1 for CO2). This is largely due to rapid upper tropospheric warming and cloud adjustments, which lead to enhanced atmospheric radiative cooling (and hence a precipitation increase) and partly compensate increased atmospheric radiative heating (i.e. which is associated with a precipitation decrease) from the instantaneous perturbation.en_US
dc.language.isoengen_US
dc.publisherSpringer Nature Ltden_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe effect of rapid adjustments to halocarbons and N2O on radiative forcingen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1-7en_US
dc.source.volume3:43en_US
dc.source.journalnpj Climate and Atmospheric Scienceen_US
dc.identifier.doi10.1038/s41612-020-00150-x
dc.identifier.cristin1850091
dc.relation.projectNorges forskningsråd: 229771en_US
dc.relation.projectNorges forskningsråd: 270061en_US
dc.relation.projectNorges forskningsråd: 295046en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal