Show simple item record

dc.contributor.authorFriedlingstein, Pierre
dc.contributor.authorJones, Matthew W.
dc.contributor.authorO'Sullivan, Michael
dc.contributor.authorAndrew, Robbie
dc.contributor.authorHauck, Judith
dc.contributor.authorPeters, Glen Philip
dc.contributor.authorPeters, Wouter
dc.contributor.authorPongratz, Julia
dc.contributor.authorSitch, Stephen
dc.contributor.authorLe Quéré, Corinne
dc.contributor.authorBakker, Dorothée C.E.
dc.contributor.authorCanadell, Josep G.
dc.contributor.authorCiais, Philippe
dc.contributor.authorJackson, Robert B.
dc.contributor.authorAnthoni, Peter
dc.contributor.authorBarbero, Leticia
dc.contributor.authorBastos, Ana
dc.contributor.authorBastrikov, Vladislav
dc.contributor.authorBecker, Meike
dc.contributor.authorBopp, Laurent
dc.contributor.authorBuitenhuis, Erik
dc.contributor.authorChandra, Naveen
dc.contributor.authorChevallier, Frédéric
dc.contributor.authorChini, Louise P.
dc.contributor.authorCurrie, Kim I.
dc.contributor.authorFeely, Richard A.
dc.contributor.authorGehlen, Marion
dc.contributor.authorGilfillan, Dennis
dc.contributor.authorGkritzalis, Thanos
dc.contributor.authorGoll, Daniel S.
dc.contributor.authorGruber, Nicolas
dc.contributor.authorGutekunst, Sören
dc.contributor.authorHarris, Ian
dc.contributor.authorHaverd, Vanessa
dc.contributor.authorHoughton, Richard A.
dc.contributor.authorHurtt, George
dc.contributor.authorIlyina, Tatiana
dc.contributor.authorJain, Atul K.
dc.contributor.authorJoetzjer, Emilie
dc.contributor.authorKaplan, Jed O.
dc.contributor.authorKato, Etsushi
dc.contributor.authorGoldewijk, Kees Klein
dc.contributor.authorKorsbakken, Jan Ivar
dc.contributor.authorLandschutzer, Peter
dc.contributor.authorLauvset, Siv Kari
dc.contributor.authorLefevre, Nathalie
dc.contributor.authorLenton, Andrew
dc.contributor.authorLienert, Sebastian
dc.contributor.authorLombardozzi, Danica
dc.contributor.authorMarland, Gregg
dc.contributor.authorMcGuire, Patrick C.
dc.contributor.authorMelton, Joe R.
dc.contributor.authorMetzl, Nicolas
dc.contributor.authorMunro, David R.
dc.contributor.authorNabel, Julia E.M.S.
dc.contributor.authorNakaoka, Shin-Ichiro
dc.contributor.authorNeill, Craig
dc.contributor.authorOmar, Abdirahman
dc.contributor.authorOno, Tsuneo
dc.contributor.authorPeregon, Anna
dc.contributor.authorPierrot, Denis
dc.contributor.authorPoulter, Benjamin
dc.contributor.authorRehder, Gregor
dc.contributor.authorResplandy, Laure
dc.contributor.authorRobertson, Eddy
dc.contributor.authorRödenbeck, Christian
dc.contributor.authorSéférian, Roland
dc.contributor.authorSchwinger, Jörg
dc.contributor.authorSmith, Naomi
dc.contributor.authorTans, Pieter P.
dc.contributor.authorTian, Hanqin
dc.contributor.authorTilbrook, Bronte
dc.contributor.authorTubiello, Francesco N.
dc.contributor.authorvan der Werf, Guido R.
dc.contributor.authorWiltshire, Andrew J.
dc.contributor.authorZaehle, Sönke
dc.identifier.citationEarth System Science Data. 2019, 11 (4), 1783-1838.en_US
dc.description.abstractAccurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at (Friedlingstein et al., 2019).en_US
dc.publisherCopernicus publicationsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titleGlobal carbon budget 2019en_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.source.journalEarth System Science Dataen_US
cristin.unitnameCICERO Senter for klimaforskning

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal