Vis enkel innførsel

dc.contributor.authorStjern, Camilla Weum
dc.contributor.authorMuri, Helene
dc.contributor.authorAhlm, Lars
dc.contributor.authorBoucher, Olivier
dc.contributor.authorCole, Jason N.S.
dc.contributor.authorJi, Duoying
dc.contributor.authorJones, Andy
dc.contributor.authorHaywood, Jim M.
dc.contributor.authorKravitz, Ben
dc.contributor.authorLenton, Andrew
dc.contributor.authorMoore, John C.
dc.contributor.authorNiemeier, Ulrike
dc.contributor.authorPhipps, Steven J.
dc.contributor.authorSchmidt, Hauke
dc.contributor.authorWatanabe, Shingo
dc.contributor.authorKristjansson, Jon Egill
dc.date.accessioned2018-01-26T12:18:37Z
dc.date.available2018-01-26T12:18:37Z
dc.date.created2017-07-17T15:52:38Z
dc.date.issued2017
dc.identifier.citationAtmospheric Chemistry and Physics Discussions. 2017, .
dc.identifier.issn1680-7367
dc.identifier.urihttp://hdl.handle.net/11250/2479885
dc.description.abstractHere we show results from Earth System Model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to −1.9 Wm−2, with a substantial inter-model spread of −0.6 to −2.5 Wm−2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2060) −0.95 [−0.18 to −1.19] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continentss. Globally averaged there is a weak but significant precipitation decrease of −2.24 [−0.49 to −2.90] % due to a colder climate, but at low latitudes there is a 1.20 % increase over land. This increase is part of a circulation change where a strong negative TOA short-wave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated by rising motion and positive TOA long-wave signals over adjacent land regions.
dc.language.isoeng
dc.titleResponse to marine cloud brightening in a multi-model ensemble
dc.typeJournal article
dc.description.versionsubmittedVersion
dc.source.pagenumber20
dc.source.journalAtmospheric Chemistry and Physics Discussions
dc.identifier.doi10.5194/acp-2017-629
dc.identifier.cristin1482454
dc.relation.projectNotur/NorStore: nn9182k
dc.relation.projectNotur/NorStore: nn9448k
dc.relation.projectNorges forskningsråd: 229760
dc.relation.projectNotur/NorStore: NS9033K
dc.relation.projectVetenskapsrådet: 2015-748
dc.relation.projectNorges forskningsråd: 261862
cristin.unitcode7475,0,0,0
cristin.unitnameCICERO Senter for klimaforskning
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode0


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel