Vis enkel innførsel

dc.contributor.authorZweigel, Robin Benjamin
dc.contributor.authorDashtseren, Avirmed
dc.contributor.authorTemuujin, Khurelbaatar
dc.contributor.authorAalstad, Kristoffer
dc.contributor.authorWebster, Clare
dc.contributor.authorStuenzi, Simone M.
dc.contributor.authorAas, Kjetil Schanke
dc.contributor.authorLee, Hanna
dc.contributor.authorWestermann, Sebastian
dc.date.accessioned2024-11-14T14:40:06Z
dc.date.available2024-11-14T14:40:06Z
dc.date.created2024-06-28T13:14:15Z
dc.date.issued2024
dc.identifier.citationJournal of Geophysical Research (JGR): Earth Surface. 2024, 129 (6), .en_US
dc.identifier.issn2169-9003
dc.identifier.urihttps://hdl.handle.net/11250/3165053
dc.description.abstractForests overlap with large parts of the northern hemisphere permafrost area, and representing canopy processes is therefore crucial for simulating thermal and hydrological conditions in these regions. Forests impact permafrost through the modulation of radiative fluxes and exchange of turbulent fluxes, precipitation interception and regulation of transpiration. Forests also feature distinct soil layers of litter and organic matter, which play central roles for the infiltration and evaporation of water, while also providing thermal insulation for deeper ground layers. In this study, we present a new module within the CryoGrid community model to simulate forest ecosystems and their impact on the surface water and energy balance. The module includes a big-leaf vegetation scheme with adaptations for canopy heat storage and transpiration. Furthermore, we account for the effect of surface litter layers on water and energy transfer. We show that the model is capable of simulating radiation, snow cover and ground temperatures below a deciduous needleleaf forest on a north-facing slope in the Khentii Mountains in Central Mongolia. A sensitivity analysis of topographic aspect and ecosystem configuration confirms the important role of the litter layers for the energy and water balance of the ground. Furthermore, it suggests that the presence of permafrost is primarily linked to topographic aspect rather than the presence of forest at this site. The presented model scheme can be used to study the development of the ground thermal regime in forests, including the state of permafrost, under different climate, ecosystem, and land use scenarios.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley & Sonsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSimulating the Thermal Regime and Surface Energy Balance of a Permafrost-Underlain Forest in Mongoliaen_US
dc.title.alternativeSimulating the Thermal Regime and Surface Energy Balance of a Permafrost-Underlain Forest in Mongoliaen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume129en_US
dc.source.journalJournal of Geophysical Research (JGR): Earth Surfaceen_US
dc.source.issue6en_US
dc.identifier.doi10.1029/2023JF007609
dc.identifier.cristin2279641
dc.relation.projectNorges forskningsråd: 301639en_US
dc.relation.projectNorges forskningsråd: 309625en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal