Solar radiation modification challenges decarbonization with renewable solar energy
Peer reviewed, Journal article
Published version
View/ Open
Date
2024Metadata
Show full item recordCollections
- Journal articles [507]
Abstract
Solar radiation modification (SRM) is increasingly being discussed as a potential tool to reduce global and regional temperatures to buy time for conventional carbon mitigation measures to take effect. However, most simulations to date assume SRM to be an additive component to the climate change toolbox, without any physical coupling between mitigation and SRM. In this study we analyze one aspect of this coupling: how renewable energy (RE) capacity, and therefore decarbonization rates, may be affected under SRM deployment by modification of photovoltaic (PV) and concentrated solar power (CSP) production potential. Simulated 1 h output from the Earth system model CNRM-ESM2-1 for scenario-based experiments is used for the assessment. The SRM scenario uses stratospheric aerosol injections (SAIs) to approximately lower global mean temperature from the high-emission scenario SSP585 baseline to the moderate-emission scenario SSP245. We find that by the end of the century, most regions experience an increased number of low PV and CSP energy weeks per year under SAI compared to SSP245. Compared to SSP585, while the increase in low energy weeks under SAI is still dominant on a global scale, certain areas may benefit from SAI and see fewer low PV or CSP energy weeks. A substantial part of the decrease in potential with SAI compared to the SSP scenarios is compensated for by optically thinner upper-tropospheric clouds under SAI, which allow more radiation to penetrate towards the surface. The largest relative reductions in PV potential are seen in the Northern and Southern Hemisphere midlatitudes. Our study suggests that using SAI to reduce high-end global warming to moderate global warming could pose increased challenges for meeting energy demand with solar renewable resources.