1	Im	pact of heat on all-cause and cause-specific mortality: A multi-city study in Texas
2	Ch	uunyu Guo ^a , Kevin Lanza ^b , Dongying Li ^c , Yuyu Zhou ^d , Kristin Aunan ^e , Becky P Y Loo ^f ,
3	Jas	son Lee ^g , Bin Luo ^h , Xiaoli Duan ⁱ , Wangjian Zhang ^j , Zhengjun Zhang ^k , Shao Lin ^l , Kai Zhang ^l
4	a.	Department of Economics, School of Art and Science, University at Albany, State
5		University of New York, Albany, NY, USA
6	b.	Department of Epidemiology, Human Genetics, & Environmental Sciences, School of
7		Public Health in Austin, The University of Texas Health Science Center at Houston, Austin,
8		TX, USA
9	c.	Department of Landscape Architecture and Urban Planning, Texas A&M University,
10		College Station, TX, USA
11	d.	Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA,
12		USA
13	e.	CICERO Center for International Climate Research, N-0318, Oslo, Norway
14	f.	Department of Geography, Faculty of Social Sciences, The University of Hong Kong, Pok
15		Fu Lam, Hong Kong.
16	g.	Department of Physiology, Yong Loo Lin School of Medicine, National University of
17		Singapore, Singapore
18	h.	Institute of Occupational Health and Environmental Health, School of Public Health,
19		Lanzhou University, Lanzhou, Gansu, China
20	i.	School of Energy and Environmental Engineering, University of Science and Technology
21		Beijing, Beijing, China
22	j.	Department of Medical Statistics, Center for Health Information Research, Guangdong Key
23		Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou,
24		Guangdong, China
25	k.	Department of Statistics, University of Wisconsin-Madison, WI, USA

26	1. Department of Environmental Health Sciences, School of Public Health, University at
27	Albany, State University of New York, Rensselaer, NY, USA
28	Corresponding author:
29	Kai Zhang, Department of Environmental Health Sciences, School of Public Health, University
30	at Albany, State University of New York, Rensselaer, NY USA 12144
31	Telephone: 518-473-1821. E-mail address: kzhang9@albany.edu
32	Running title: Impact of Heat on Mortality in Texas
33	
34	
35	Acknowledgments
36	
37	Competing Financial Interests: The authors declare they have no competing financial interests.
38	
39	
40	
41	
42	Abstract
43	Studies on the health effects of heat are particularly limited in Texas, the U.S. state with the
44	top ten highest number of annual heat-related deaths per capita from 2018-2020. This study
45	aims to assess the effects of heat on all-cause and cause-specific mortality in 12 metropolitan
46	statistical areas (MSAs) across Texas from 1990-2011. First, we determined the heat
47	thresholds for each MSA above which the relation between temperature and mortality is
48	linear. We then conducted a distributed lag non-linear model for each MSA, followed by a
49	random effects meta-analysis to estimate the pooled effects for all MSAs. We repeated this

50	process for each mortality cause and age group to achieve the effect estimates. We found a
51	1°C temperature increase above the heat threshold is associated with an increase in the
52	relative risk of all-cause mortality of 0.60% (95%CI [0.39%, 0.82%]) and 1.10% (95%CI
53	[0.65%, 1.56%]) for adults older than 75. For each MSA, the relative risk of mortality for a
54	1°C temperature increase above the heat threshold ranges from 0.10% (95%CI [0.09%,
55	0.10%]) to 1.29% (95%CI [1.26%, 1.32%]). Moreover, high temperature had a negative but
56	not statistically significant effect on cardiovascular mortality (-0.37%, 95%CI [-0.35%,
57	1.09%]) and respiratory disease (-1.97%, 95%CI [-0.11%, 4.08%]). Our study found that high
58	temperatures can significantly impact all-cause mortality in Texas, and effect estimates differ
59	by MSA, age group, and cause of death. Our findings generate critical information on the
60	impact of heat on mortality in Texas, providing insights for policymakers on resource
61	allocation and strategic intervention to reduce heat-related health effects.
62	Keywords: Urban Climate: High Temperature: Mortality: Distributed Lag Model
62 63	Keywords: Urban Climate; High Temperature; Mortality; Distributed Lag Model
62 63 64	Keywords: Urban Climate; High Temperature; Mortality; Distributed Lag Model 1. Introduction
63	
63 64	1. Introduction
63 64 65	1. Introduction Climate change has increased the intensity, frequency, and duration of extreme heat
63 64 65 66	1. Introduction Climate change has increased the intensity, frequency, and duration of extreme heat events (i.e., heat waves) (EPA, 2022), and studies have shown the adverse effect of exposure
63 64 65 66 67	1. Introduction Climate change has increased the intensity, frequency, and duration of extreme heat events (i.e., heat waves) (EPA, 2022), and studies have shown the adverse effect of exposure to high temperatures on mortality and morbidity across geographic locations and population
63 64 65 66 67 68	1. Introduction Climate change has increased the intensity, frequency, and duration of extreme heat events (i.e., heat waves) (EPA, 2022), and studies have shown the adverse effect of exposure to high temperatures on mortality and morbidity across geographic locations and population groups (Anderson & Bell, 2009; Anderson & Bell, 2011; Chien et al., 2016; Haines et al.,
63 64 65 66 67 68 69	1. Introduction Climate change has increased the intensity, frequency, and duration of extreme heat events (i.e., heat waves) (EPA, 2022), and studies have shown the adverse effect of exposure to high temperatures on mortality and morbidity across geographic locations and population groups (Anderson & Bell, 2009; Anderson & Bell, 2011; Chien et al., 2016; Haines et al., 2006; Martiello & Giacchi, 2010; O'Neill et al., 2005). From 2004-2018, there were 702
63 64 65 66 67 68 69 70	1. Introduction Climate change has increased the intensity, frequency, and duration of extreme heat events (i.e., heat waves) (EPA, 2022), and studies have shown the adverse effect of exposure to high temperatures on mortality and morbidity across geographic locations and population groups (Anderson & Bell, 2009; Anderson & Bell, 2011; Chien et al., 2016; Haines et al., 2006; Martiello & Giacchi, 2010; O'Neill et al., 2005). From 2004-2018, there were 702 heat-related deaths on average each year in the U.S. (Vaidyanathan et al., 2020). The City of
 63 64 65 66 67 68 69 70 71 	1. Introduction Climate change has increased the intensity, frequency, and duration of extreme heat events (i.e., heat waves) (EPA, 2022), and studies have shown the adverse effect of exposure to high temperatures on mortality and morbidity across geographic locations and population groups (Anderson & Bell, 2009; Anderson & Bell, 2011; Chien et al., 2016; Haines et al., 2006; Martiello & Giacchi, 2010; O'Neill et al., 2005). From 2004-2018, there were 702 heat-related deaths on average each year in the U.S. (Vaidyanathan et al., 2020). The City of Houston, Texas, recorded a substantial increase in emergency department visits, especially

and urgent, especially for regions and population groups lacking adequate health service
systems and cooling measures (World Health Organization, 2017).

77 Texas has more than 60 extreme heat days a year on average, which is projected to double by 2050 (States at Risk, 2022; Vaidyanathan et al., 2020). The number of annual heat-78 related deaths per capita ranks in the top 10 highest among all states from 2018-2020 79 80 (ValuePenguin, 2022). Previous studies on the association between heat and mortality in Texas focused on a single city or population group (Chien et al., 2016; Mallen et al., 2019; 81 Marsha et al., 2018; Zhang et al., 2015; Zottarelli et al., 2021). For example, Zhang et al. 82 (2015) and Marsha et al. (2018) focused on the effect of heat on emergency department visits 83 and mortality in Houston. Mallen et al. (2019) and Zottarelli et al. (2021) concentrated on 84 vulnerable groups during extreme heat in Dallas and San Antonio. Chen et al. (2017) used 85 county-level data in Texas to determine the effect of ambient temperature on mortality yet 86 87 only concentrated on cold weather and older adults. No studies have analyzed the overall 88 mortality risk caused by heat across all major metropolitan statistical areas (MSAs) in Texas.

The impact of heat on health differs by individual sociodemographic characteristics, 89 spatial location, and mortality causes. Gronlund (2014), Xu et al. (2014), and Basagaña et al. 90 91 (2011) have shown that age, income, and education impact the effect of heat on health. Zhang et al. (2015) found older adults to be more susceptible than younger adults to extreme 92 93 temperatures. Further, Chien et al. (2016) found the effect of heat waves on mortality of older adults to be most pronounced in Northwestern Texas and partially Western Texas. Anderson 94 and Bell (2009) revealed that cardiorespiratory mortality risk increased by 8.8% during heat 95 96 wave days compared with non-heat wave days in 107 U.S. communities. Cheng et al. (2019) reviewed the mechanism of cardiorespiratory risk caused by heat exposure. Zhang et 97 al.(2018) projected the number of deaths caused by cardiovascular diseases resulting from 98 heat exposure under varying climate change, population, and adaptation scenarios. Basagaña 99

et al. (2011) estimated the effect of heat on 66 mortality causes, finding that the risk of
mortality increases for individuals with pre-existing illness (e.g., cardiovascular and
respiratory diseases).

O'Neill et al. (2005) suggested that race was associated with the magnitude of the effect of heat on mortality, which may be related to differences in air conditioning prevalence across cities. Texas has a diverse racial composition, with about 40% of residents identifying as Hispanic and about 12% as Black (Texas Demographic Center, 2020). In Texas, Black and Hispanic adults are more likely to report being not in good health compared with White adults (Turner et al., 2021). No studies have focused on Texas when estimating the impact of heat on mortality by race and ethnicity.

110 Herein, we provided a comprehensive analysis of the effects of heat on mortality for 111 all major MSAs in Texas using a consistent statistical methodology. To our knowledge, our study covers the longest time period and the widest geographic area in Texas compared to 112 previous research. We conducted a heat-mortality analysis for each MSA separately and then 113 performed a meta-analysis. Our analysis culminated in an assessment of the association 114 115 between heat and mortality by age and mortality causes. We also discuss the impact of heat on mortality by race and ethnicity. Our findings on the overall effect of heat on mortality in 116 Texas can be referenced by state regulators when developing policies to mitigate heat-related 117 118 health effects. Further, our quantification of the heat-mortality relationship for each major MSA in Texas can serve as input for future projections of health risks due to climate change. 119

- 120 **2. Data and Methods**
- 121 **2.1 Study Setting**

This study focused on the summer season (May 1st to September 30th) in Texas, a
state located in the South-Central region of the United States that is the second largest state in

the country by both geographic area and population. Of the 25 total MSAs in Texas, we 124 selected 12 MSAs for analysis based on data consistency in population, mortality, weather, 125 and air pollution information from 1990-2011: Austin-Round Rock, Beaumont-Port Arthur, 126 Brownsville-Harlingen, Corpus Christi, Dallas-Plano-Irving, El Paso, Houston-The 127 Woodlands-Sugar Land, Killeen-Temple, Lubbock, McAllen-Edinburg-Mission, San 128 Antonio-New Braunfels, and Waco. During the study period, the population size of the 129 130 selected MSAs remained consistently above 200,000. Figure 1 showed the map of 12 selected Texas MSA and their population sizes. 131

132

2.2 Mortality and Population Data

We obtained all-cause mortality data for residents living in 12 MSAs in Texas from 133 the Texas Department of State Health Services. We aggregated the raw data by daily and 134 MSA levels from 1990-2011. To aggregate the data, we first classified the mortality data into 135 different age groups (0-65, 65-75, 75+) determined by the observation counts in the data. We 136 then classified the data into two groups of different mortality causes based on the 137 International Classification of Disease Ninth Revision (ICD-9) and Tenth Revision (ICD-10) 138 (World Health Organization, 1975, 1992). The first group was cardiovascular diseases (CVD, 139 140 ICD-9 390-429; ICD-10 I01-I52), which included ischemic heart disease (IHD, ICD-9 410-414; ICD-10 I20-I52), myocardial infarction disease (MI, ICD-9410; ICD-10 I21, I22), and 141 142 stroke (ICD-9 430-438; ICD-10 I60-I69). The second group was respiratory diseases (RESP, ICD-9 460-519; ICD-10 J00-J99), which included chronic obstructive pulmonary disease 143 (COPD, ICD-9 490-496 except 493; ICD-10 J40-J44, J47) and pneumonia (PNEU, ICD-9 144 480-486; ICD-10 J12-J18). The dataset for the population size in each MSA was from the 145 Texas A&M University Texas Real Estate Research Center (2022). 146

147 **2.3 Weather and Air Pollution Data**

Hourly weather data originated from the Integrated Surface Database provided by the 148 National Climate Data Center. The original dataset contained hourly temperature and dew 149 point temperature data from multiple monitoring stations. To aggregate the dataset to the 150 MSA- and day-level, we used the weather records from one representative monitoring station 151 in the most populated area within each MSA following the method in Zanobetti et al. (2012). 152 153 Next, we aggregated the hourly data into daily mean, minimum, and maximum temperature, as well as dew point temperature. In our estimation, we used daily mean temperature to 154 155 represent the daily temperature exposure (Chen et al., 2017).

We included ground-level ozone in our analysis since it directly correlates with temperature (Coates et al., 2016) and ozone exposure is significantly associated with health outcomes (Reid et al., 2012). We retrieved ozone information from the Texas Air Monitoring Information System Database (Texas Commission on Environmental Quality). We aggregated the ozone data from the hour- to day-level for each MSA by taking the daily average results from all monitors within each MSA.

162 2.4. Statistical Analysis

We combined mortality, population, weather, and air pollution data to conduct a multi-city time series analysis consisting of two stages, following Chen et al. (2017). First, we conducted an MSA-specific estimate of the effect of heat on mortality using Poisson regression, which allows for overdispersion in the model. Second, we performed a metaanalysis on the effect of heat on mortality by pooling the estimated results from the Poisson regression. We repeated this two-stage process to estimate the effect for each age group and mortality cause.

170 **2.4.1 MSA-Specific Models**

The first stage-construction of MSA-specific models-involved two steps. First, we 171 determined the presence of thresholds of heat (i.e., when temperature reaches a certain value, 172 a linear relationship exists between temperature and mortality). We plotted the relationship 173 between temperature and mortality counts using generalized additive modeling (GAM) with a 174 spline function of temperature for each MSA. The dependent variable in the GAM was lag 0-175 176 6 (i.e., average temperature of the previous six days) to account for the delayed effect of heat. We included days of the week and year to account for time trends and seasonality. We also 177 178 adjusted models for mean dew point temperature and population size, per previous studies (Lee et al., 2016; Marsha et al., 2018). We controlled dew point temperature for the purpose 179 of controlling relative humidity because the relative humidity level can be calculated given 180 dew point temperature and temperature. In our estimation, most results from MSA-specific 181 analyses indicated a U-shaped or J-shaped relationship between temperature and mortality. 182 Because of the nonlinear relationship between temperature and mortality and the purpose for 183 the use in the future projection of heat-related risk, we need to determine an optimal threshold 184 temperature above that there is an approximate linear association. Given the possible range of 185 thresholds of heat, we determined the exact threshold used in the model by minimizing the 186 Akaike information criterion for regressions using quasi-Poisson distribution. 187

For the second step in constructing MSA-specific models, we used single threshold
distributed lag non-linear models to quantify the effect of heat on mortality. We estimated a
Poisson regression model for each MSA:

$$\log[E(Y_t)] = \alpha + cb(meTMP_{t,l}) + \delta DOW_t + s(DOY_t, 4) + s(meDWP_t, 3)$$
(1)
+ $\lambda \ln(Population_y)$

 Y_t is the number of deaths on day t. meTMP refers to daily mean temperature and is our 191 primary exposure variable. We modeled meTMP from two dimensions: exposure-response 192 and lag. $cb(meTMP_{t,l})$ is a cross-basis function of $meTMP_{t,l}$, which is the mean temperature 193 on lag day l of day t; l represents natural spline function with maximum six lag days and two 194 degrees of freedom; DOW_t is a factor variable representing the day of the week for day t; 195 $s(DOY_t, 4)$ represents a smooth function (natural cubic spline) of DOY_t , which represents 196 which day of the year for day t with four degrees of freedom; $meDWP_t$ represents mean dew 197 point temperature with three degrees of freedom; $\ln(Population_t)$ represents the natural 198 logarithm of the population size in year y; α , δ , λ are the estimated parameter in the 199 regression. 200

Additionally, we conducted the same procedure for each age group and mortality cause. The estimated results can be explained as the change in relative risk of mortality with a 1°C increase in temperature above the threshold of heat.

204 2.4.2 Meta-Analysis

We pooled estimation results from the first stage through multivariate meta-analysis 205 using random effect modeling in the second stage. Following Chen et al. (2017), we assumed 206 that the estimated effect of heat on mortality followed a normal distribution with the real 207 208 effect as the mean. The variance of distribution was the summation of the within-MSA variance of estimated effect and between-MSA variance of true effect. We estimated the 209 between-MSA variance of true effect using restricted maximum likelihood. Each MSA 210 included in the meta-analysis was assumed to be randomly selected. We also conducted the 211 same two-stage modeling for the effect estimate for each mortality cause and age group. 212

2.4.3 Sensitivity Analysis

We conducted a sensitivity analysis to check how the effect of heat on mortality differed based on different ranges of lag days. We first changed the lag range for temperature control to lag 0-1, lag 0-2 and lag 0-10. We then repeated the analysis with the inclusion of ozone pollution in the model.

218 **3. Results**

Across the 12 major MSAs in Texas during warm seasons from 1990-2011 (Table 1), 219 the daily mean temperature and average daily mean temperature ranged from 6-37°C and 220 from 25-30°C, respectively. Average daily mean temperature was highest in McAllen-221 Edinburg-Mission and lowest in Lubbock. Dallas-Plano-Irving was the most populous MSA 222 and had 58 deaths each day on average, the second largest rate of all study MSAs. Waco was 223 the least populous and had six deaths each day on average. Houston-The Woodlands-Sugar 224 Land had 74 deaths each day on average, the largest rate among all MSAs, and Brownsville-225 Harlingen had the least daily deaths on average. Heat thresholds in each MSA ranged from 226 24-32°C. 227

The pooled estimation result for the effect of heat on all-cause mortality equaled 0.60% and was statistically significant for all MSAs (Figure 2). Pooled estimation results for each MSA were statistically significant, with Brownsville-Harlingen having the largest effect of heat on mortality (1.29%, 95%CI [1.26, 1.32]) and Houston-The Woodlands-Sugar Land having the smallest effect (0.10%, 95%CI [0.09, 0.10]).

For age-specific pooled estimation of the effect of heat on mortality (Figure 3), heat tended to have a more significant impact on older adults. For adults older than 75 years, 1°C of temperature increase above the heat threshold was associated with a 1.10% (95%CI [0.65, 1.56]) increase in relative risk of mortality, on average. As for the cause-specific estimation,

we tested two major systems of diseases: cardiovascular diseases (0.37%) and respiratory
diseases (1.97%). The effect of heat is the highest on the mortality risk due to COPD, but this
result was not statistically significant.

In the sensitivity analysis for ranges of lag days and ozone pollution in our models (Figure 4), extending the lag length in the model resulted in an increase in the estimated effect of heat on mortality. The highest estimated effect (0.82%, 95%CI [0.43, 1.2]) occurred when using lag 0-10. After controlling for ozone, the highest estimated effect (0.73%, 95%CI [-1.15, 2.65]) occurred with the model using lag 0-6 but was insignificant.

245 4. Discussion

Previous investigations of the impact of heat on human health were not focused on 246 247 warm climate regions but rather on cold climates or at the national level (Anderson & Bell, 248 2009; Anderson & Bell, 2011; Basu & Ostro, 2008; Gronlund, 2014; O'Neill & Ebi, 2009; Ye et al., 2012). The limited studies in Texas concentrated on one city or a specific population 249 250 (Chen et al., 2017; Chien et al., 2016; Zhang et al., 2015). To our knowledge, this is the first study that systematically explored the effect of heat on all-cause mortality across all major 251 MSAs in Texas, which provides critical information for decision-makers that can support 252 preparation for projected increases in temperature with climate change. 253

The pooled estimate for all MSAs was 0.60% (95%CI [0.39, 0.82]), which suggested that a 1°C temperature increase above the heat threshold increases the relative mortality risk by 0.60% on average. Anderson and Bell (2009) conducted a time series study on associations between weather and mortality using data from 43 U.S. cities from 1987-2005. Their estimate of the average effect of heat in Dallas was 1.0%, which is slightly higher than our result of 0.74% (95%CI [0.74, 0.75]). The slight difference between our results and

260 earlier work may be related to the different study periods: advances in technology and261 knowledge over time may better equip society for the health threat of heat.

The estimated effect of heat on mortality in our study was lower compared to previous 262 studies in northern cities in the U.S. For example, Anderson and Bell (2009) found that the 263 effect of heat on mortality was about 4% in New York City and 3% in Chicago. Gasparrini et 264 265 al. (2012) showed the relative risk of increasing temperature on mortality was 2.1% (95% CI [1.6, 2.6]) in England and Wales. This difference could be potentially attributed to the high 266 prevalence of air conditioning use in Texas (O'Neill et al., 2005; Zhang et al., 2015), which 267 could mitigate the impact of heat on human health (Davis et al., 2003; Rogot et al., 1992). 268 According to the Residential Energy Consumption Survey, about 96% of households in 269 Texas use air conditioning (U.S. Energy Information Administration, 2009), while northern 270 states have a much lower usage. For example, about 76% of residents in Michigan use air 271 conditioning. Zhang et al. (2015) found that a heat wave in 2011 had no impact on mortality 272 273 in Houston because of widespread air conditioning use. In estimating the correlation between air temperature and heat-related deaths in 28 MSAs in the U.S., Davis et al. (2003) found a 274 decline in heat-related mortality rates from 1964-1998, which they associated with an 275 increased prevalence of air conditioning use in households. 276

We found that a 1°C temperature increase above the heat threshold increases the 277 278 relative mortality risk for adults older than 75 by 1.10% (95%CI [0.65, 1.56] on average. This finding is consistent with Chien et al. (2016) that found the relative mortality risk of older 279 adults caused by heat waves was 1.0% in Texas. Generally, older adults are more susceptible 280 to heat than younger individuals (Centers for Disease Control and Prevention, 2017). Kenney 281 et al. (2014) explained that it was because they have a higher risk of excess central 282 cardiovascular strain, impaired thermoregulation, and lower evaporative heat loss due to 283 284 attenuated blood flow and cardiac output.

Our finding of an insignificant effect of 1°C temperature increase above the heat 285 threshold on most causes of mortality may be explained by the small number of non-zero 286 287 observations after dividing total mortality into specific causes, ultimately diminishing the variation for each estimated parameter. Although the findings were not statistically 288 289 significant, the magnitude of estimation results corroborates previous findings. Our results 290 suggested that the effects of heat on mortality risk caused by respiratory diseases (i.e., 291 chronic obstructive pulmonary disease and pneumonia) tended to be higher than those caused by cardiovascular diseases (i.e., ischemic heart disease, myocardial infarction disease, and 292 293 stroke). Basagaña et al. (2011) investigated 66 mortality causes and found that respiratory diseases were one of the most pronounced heat-related mortality causes (1.21%) on extreme 294 heat days. Anderson and Bell (2009) found that cardiorespiratory mortality risk increased by 295 8.8% on heat wave days compared to non-heat wave days in 107 U.S. communities. In 50 296 U.S. cities from 1989-2000, Medina-Ramón et al. (2006) found that extreme heat increased 297 298 the mortality risk of pneumonia by 1.00% and stroke by 1.03%.

Our estimations from sensitivity analysis suggested that the effect of heat on mortality 299 became less significant when using a shorter lag range for temperature, which is reasonable 300 since the acute effect of heat on mortality is generally trivial with a short lag period 301 302 (Anderson & Bell, 2009). In our models that adjusted for ozone, results were insignificant because of the direct association between temperature and ground-level ozone (Bloomer et 303 304 al., 2009), the latter of which is especially harmful to the human respiratory system (Norval et al., 2011). The observation of ozone for some days are missing, which shrink the sample size 305 for estimation when adding in ozone. Therefore, the confidence interval of the estimation 306 results without ozone is much smaller than the results with ozone added in the model. 307

308 Our findings contribute to research on health disparities. MSAs wherein more than
309 50% of individuals identify as Latino or Black (e.g., Brownsville-Harlingen, Corpus Christi,

and San Antonio-New Braunfels) tended to have a higher risk of heat-related mortality 310 compared to MSAs with a smaller percentage of population identifying as Latino or Black 311 (e.g., Austin-Round Rock, Waco, and Killeen-Temple), on average. In addition, MSAs with 312 lower levels of median household income (e.g., Corpus Christi and Beaumont-Port Arthur) 313 had higher heat-related mortality risk than higher-income MSAs (e.g., Dallas-Plano-Irving 314 and Houston-The Woodlands-Sugar Land). This is consistent with findings from O'Neill et 315 316 al. (2005) in which Black and Latino adults had higher heat-related mortality risk, which correlated to disparities in air conditioning use. Air conditioning has been shown to be the 317 318 most important factor affecting indoor temperatures (Larsen et al., 2022). Our results illustrate that communities of color and low-income communities have a higher likelihood of 319 being exposed to heat, which adds to the literature that has shown individuals identifying as 320 low-income, Latino, and Black are more likely to live in areas with less tree canopy-the 321 likes of which lower temperatures-than their higher-income and White counterparts (Lanza 322 et al., 2019). 323

This study has some noteworthy limitations. First, our modeled estimates did not 324 account for human behavior to mitigate heat exposure, such as using air conditioning and 325 326 staying indoors during extreme heat days (O'Neill et al., 2005). Second, we measured temperature at fixed sites in each MSA, which can misclassify the real extent of heat 327 328 exposure (Kuras et al., 2017). Air temperatures can vary within an MSA, with temperatures often higher in downtown areas than surrounding areas due to high amounts of energy-329 absorbing building materials, waste heat emissions, urban form, and a lack of trees (Stone Jr 330 et al., 2019). For example, at the microscale, Lanza et al. (2021) has measured daily air 331 temperatures to differ by 4°C, on average, between two sites (i.e., unshaded playground and 332 playground under tree shade) in Central Texas less than 50m apart. Future analyses using 333 higher resolution urban microclimate and community-level sociodemographic data can 334

reduce potential misclassification of heat exposure and evaluate the modifying effects ofcommunity-level factors on heat-mortality associations.

337 **5.** Conclusion

Our study provided evidence that high temperatures can significantly impact all-cause mortality in Texas during the warm season, with effects differing by MSA, age group, and cause of death. Findings contribute to our understanding of the impact of heat on human health in warm climates, and can serve as evidence for policymakers to inform resource allocation and strategic intervention to safeguard the public—especially older adults and individuals who are Black, Latino, or low-income—from the adverse impact of heat, a hazard set to be more commonplace in our changing climate.

345 **Tables and Figures**

- Table 1. Summary of daily mean temperature, daily count of all-cause mortality, population
- 347 size, and heat threshold in 12 major metropolitan statistical areas (MSAs) in Texas,
- 348 1990-2011.

	Daily Mean	Daily Count of	Population	Heat
Texas MSA	Temperature (°C) ^[1]	All-Cause Mortality	Size ^[2]	Threshold
	Mean (Min, Max)	Mean (Min, Max)	(#)	(°C)
Austin-Round Rock	27 (11, 34)	17 (2, 40)	1,716,289	25
Beaumont-Port Arthur	27 (16, 33)	11 (1, 23)	388,745	25
Brownsville-Harlingen	29 (17, 33)	5 (0, 15)	406,220	28
Corpus Christi	28 (16, 33)	8 (0, 20)	405,027	29
Dallas-Plano-Irving	27 (9, 37)	58 (30, 95)	6,366,542	26
El Paso	27 (12, 36)	10 (0, 23)	804,123	24
Houston-The Woodlands-Sugar Land	28 (16, 35)	74 (40, 129)	5,920,416	30
Killeen-Temple	28 (12,37)	5 (0, 17)	405,300	30
Lubbock	25 (6, 36)	5 (0, 14)	290,805	30
McAllen-Edinburg-Mission	30 (12, 35)	7 (0, 19)	774,769	32
San Antonio-New Braunfels	28 (13, 36)	32 (7, 56)	2,142,508	26
Waco	27 (11, 36)	6 (0, 15)	252,772	30

349 ^[1] Average daily mean temperature throughout the study period

350 ^[2] Based on 2010 Census data

- 351
- 352

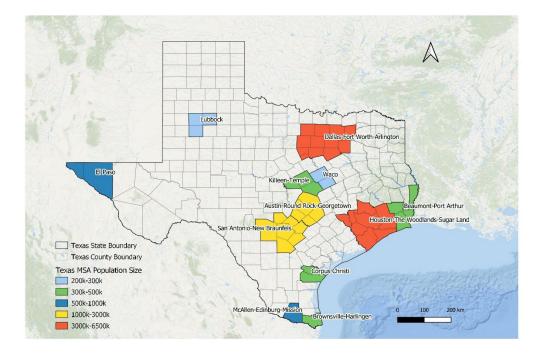
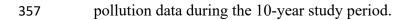



Figure 1. Map of 12 selected Texas Metropolitan Statistical Areas (MSAs). The selection of

these MSAs was based on their population size and the availability of weather and air

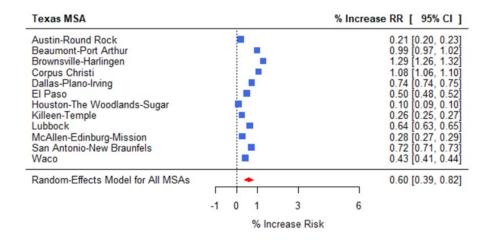
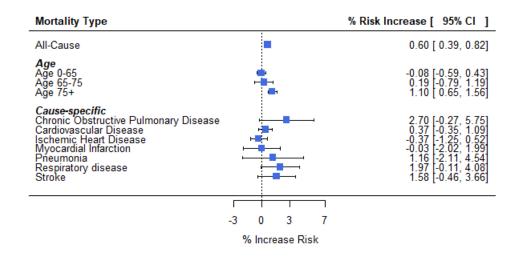
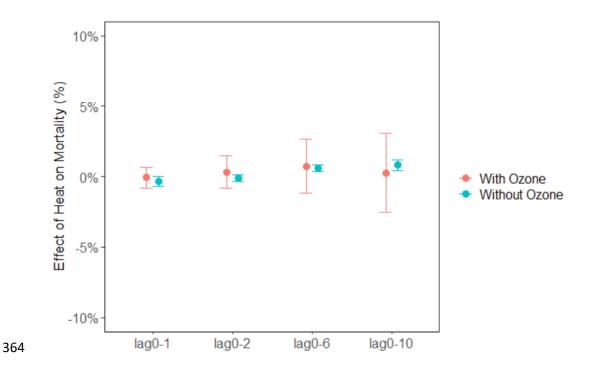



Figure 2. Meta-Analysis for the effect of heat on all-cause mortality at lag 0-6 days in 12 major


360 metropolitan statistical areas in Texas, 1990-2011.

361

Figure 3. Pooled estimations for the effect of heat on health by age and cause-specific mortality

363 at the metropolitan statistical area-level in Texas, 1990-2011.

365	Figure 4. Sensitivity analysis based on changing lag range and adding ground-level ozone to the
366	estimation model.
367	References
368	Anderson, B. G., & Bell, M. L. (2009). Weather-related mortality: how heat, cold, and heat
369	waves affect mortality in the United States. Epidemiology 20(2), 205-213.
370	Anderson, G. B., & Bell, M. L. (2011). Heat waves in the United States: mortality risk during
371	heat waves and effect modification by heat wave characteristics in 43 US communities.
372	Environmental Health Perspectives, 119(2), 210-218.
373	Basagaña, X., Sartini, C., Barrera-Gómez, J., Dadvand, P., Cunillera, J., Ostro, B., Sunyer, J., &
374	Medina-Ramón, M. (2011). Heat waves and cause-specific mortality at all ages.
375	Epidemiology, 765-772.
376	Basu, R., & Ostro, B. D. (2008). A multicounty analysis identifying the populations vulnerable
377	to mortality associated with high ambient temperature in California. American Journal of
378	Epidemiology, 168(6), 632-637.
379	Bloomer, B. J., Stehr, J. W., Piety, C. A., Salawitch, R. J., & Dickerson, R. R. (2009). Observed
380	relationships of ozone air pollution with temperature and emissions. Geophysical
381	Research Letters, 36(9).
382	Centers for Disease Control and Prevention. (2017). National Center for Environmental Health
383	(NCEH), Agency for Toxic Substances and Disease Registry (ATSDR).
384	Chen, TH., Li, X., Zhao, J., & Zhang, K. (2017). Impacts of cold weather on all-cause and
385	cause-specific mortality in Texas, 1990–2011. Environmental Pollution, 225, 244-251.

386	Cheng, J., Xu, Z., Bambrick, H., Prescott, V., Wang, N., Zhang, Y., Su, H., Tong, S., & Hu, W.
387	(2019). Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of
388	global epidemiological evidence. Environmental Research, 177, 108610.
389	Chien, LC., Guo, Y., & Zhang, K. (2016). Spatiotemporal analysis of heat and heat wave
390	effects on elderly mortality in Texas, 2006–2011. Science of the Total Environment, 562,
391	845-851.
392	Coates, J., Mar, K. A., Ojha, N., & Butler, T. M. (2016). The influence of temperature on ozone
393	production under varying NO x conditions-a modelling study. Atmospheric Chemistry
394	and Physics, 16(18), 11601-11615.
395	Davis, R. E., Knappenberger, P. C., Michaels, P. J., & Novicoff, W. M. (2003). Changing heat-
396	related mortality in the United States. Environmental Health Perspectives, 111(14), 1712-
397	1718.
398	EPA. (2022). Climate Change Indicators: Heat Waves. https://www.epa.gov/climate-
399	indicators/climate-change-indicators-heat-waves (accessed 1 January 2023).
400	Gasparrini, A., Armstrong, B., Kovats, S., & Wilkinson, P. (2012). The effect of high
401	temperatures on cause-specific mortality in England and Wales. Occupational and
402	Environmental Medicine, 69(1), 56-61.
403	Gronlund, C. J. (2014). Racial and socioeconomic disparities in heat-related health effects and
404	their mechanisms: a review. Current Epidemiology Reports, 1(3), 165-173.
405	Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalán, C. (2006). Climate change and
406	human health: impacts, vulnerability and public health. Public health, 120(7), 585-596.

407	Kenney, W. L., Craighead, D. H., & Alexander, L. M. (2014). Heat waves, aging, and human
408	cardiovascular health. Medicine and Science in Sports and Exercise, 46(10), 1891.
409	Kuras, E. R., Richardson, M. B., Calkins, M. M., Ebi, K. L., Hess, J. J., Kintziger, K. W., Jagger,
410	M. A., Middel, A., Scott, A. A., & Spector, J. T. (2017). Opportunities and challenges for
411	personal heat exposure research. Environmental Health Perspectives, 125(8), 085001.
412	Lanza, K., Alcazar, M., Hoelscher, D. M., & Kohl, H. W. (2021). Effects of trees, gardens, and
413	nature trails on heat index and child health: design and methods of the Green Schoolyards
414	Project. BMC Public Health, 21(1), 98. https://doi.org/10.1186/s12889-020-10128-2
415	Lanza, K., Stone Jr, B., & Haardörfer, R. (2019). How race, ethnicity, and income moderate the
416	relationship between urban vegetation and physical activity in the United States.
417	Preventive Medicine.
418	Larsen, L., Gronlund, C. J., Ketenci, K. C., Harlan, S. L., Hondula, D. M., Stone, B., Lanza, K.,
419	Mallen, E., Wright, M. K., & O'Neill, M. S. (2022). Safe at Home? Journal of the
420	American Planning Association, 1-13. https://doi.org/10.1080/01944363.2022.2087724
421	Lee, M., Shi, L., Zanobetti, A., & Schwartz, J. D. (2016). Study on the association between
422	ambient temperature and mortality using spatially resolved exposure data. Environmental
423	Research, 151, 610-617.
424	Mallen, E., Stone, B., & Lanza, K. (2019). A methodological assessment of extreme heat
425	mortality modeling and heat vulnerability mapping in Dallas, Texas. Urban Climate, 30,
426	100528.

427	Marsha, A., Sain, S., Heaton, M., Monaghan, A., & Wilhelmi, O. (2018). Influences of climatic
428	and population changes on heat-related mortality in Houston, Texas, USA. Climatic
429	Change, 146(3), 471-485.
430	Martiello, M. A., & Giacchi, M. V. (2010). High temperatures and health outcomes: a review of
431	the literature. Scandinavian Journal of Public Health, 38(8), 826-837.
432	Medina-Ramón, M., Zanobetti, A., Cavanagh, D. P., & Schwartz, J. (2006). Extreme
433	temperatures and mortality: assessing effect modification by personal characteristics and
434	specific cause of death in a multi-city case-only analysis. Environmental Health
435	Perspectives, 114(9), 1331-1336.
436	Michelozzi, P., Accetta, G., De Sario, M., D'Ippoliti, D., Marino, C., Baccini, M., Biggeri, A.,
437	Anderson, H. R., Katsouyanni, K., & Ballester, F. (2009). High temperature and
438	hospitalizations for cardiovascular and respiratory causes in 12 European cities.
439	American Journal of Respiratory and Critical Care Medicine, 179(5), 383-389.
440	Norval, M., Lucas, R., Cullen, A., De Gruijl, F., Longstreth, J., Takizawa, Y., & Van Der Leun,
441	J. (2011). The human health effects of ozone depletion and interactions with climate
442	change. Photochemical & Photobiological Sciences, 10(2), 199-225.
443	O'Neill, M. S., & Ebi, K. L. (2009). Temperature extremes and health: impacts of climate
444	variability and change in the United States. Journal of Occupational and Environmental
445	Medicine, 13-25.
446	O'Neill, M. S., Zanobetti, A., & Schwartz, J. (2005). Disparities by race in heat-related mortality
447	in four US cities: the role of air conditioning prevalence. Journal of Urban Health, 82(2),
448	191-197.

449	Reid, C. E., Snowden, J. M., Kontgis, C., & Tager, I. B. (2012). The role of ambient ozone in
450	epidemiologic studies of heat-related mortality. Environmental Health Perspectives,
451	120(12), 1627-1630.
452	Rogot, E., Sorlie, P. D., & Backlund, E. (1992). Air-conditioning and mortality in hot weather.
453	American Journal of Epidemiology, 136(1), 106-116.
454	States at Risk. (2022).
455	https://statesatrisk.org/texas/all#:~:text=Texas%20is%20home%20to%209,McAllen%20in%20th
456	e%202nd%20slot.&text=Texas%20currently%20averages%20more%20than,year%2C%20second
457	%20only%20to%20Florida (accessed 1 January 2023).
458	Stone Jr, B., Lanza, K., Mallen, E., Vargo, J., & Russell, A. (2019). Urban Heat Management in
459	Louisville, Kentucky: A Framework for Climate Adaptation Planning. Journal of
460	Planning Education and Research, 0739456X19879214.
461	Texas A&M University Texas Real Estate Research Center. (2022). Population Data for Texas.
462	https://www.recenter.tamu.edu/data/population#!/state/Texas (accessed 4 Feb.2023)
463	Texas Commission on Environmental Quality. <u>https://www.tceq.texas.gov/airquality/monops</u>
464	(accessed 1 January 2023).
465	Texas Demographic Center. (2020). 2020 Census Data Release.
466	https://demographics.texas.gov/data/decennial/2020/ (accessed 1 January 2023).
467	Turner, A., LaVeist, A. T. A., Richard, P., & Gaskin, D. J. (2021). Economic impacts of health
468	disparities in Texas 2020. Episcopal Health Foundation.

- 469 https://www.episcopalhealth.org/wp-content/uploads/2021/01/Econ-Impactsof-Health-
- 470 <u>Disparities-Texas-2020-FINAL-002.pdf</u> (accessed 1 January 2023).
- 471 U.S. Energy Information Administration. (2009). Residents Energy Consumption Survey
- 472 (RECS) <u>https://www.eia.gov/consumption/residential/data/2009/#ac</u> (accessed 1 January
 473 2023).
- Vaidyanathan, A., Malilay, J., Schramm, P., & Saha, S. (2020). Heat-Related Deaths—United
 States, 2004–2018. Morbidity and Mortality Weekly Report, 69(24), 729.
- 476 ValuePenguin. (2022). Heat-Related Deaths Up 56% Between 2018 and 2021, Provisional Data
- 477 Shows. <u>https://www.valuepenguin.com/heat-related-deaths-study</u> (accessed 1 January
 478 2023).
- 479 World Health Organization. (2017). Climate change and health fact sheet.

480 <u>http://www.who.int/mediacentre/factsheets/fs266/en/</u> (accessed 1 January 2023).

481 Xu, Z., Sheffield, P. E., Su, H., Wang, X., Bi, Y., & Tong, S. (2014). The impact of heat waves
482 on children's health: a systematic review. International Journal of Biometeorology, 58(2),

- 483 239-247.
- Ye, X., Wolff, R., Yu, W., Vaneckova, P., Pan, X., & Tong, S. (2012). Ambient temperature and
 morbidity: a review of epidemiological evidence. Environmental Health Perspectives,
 120(1), 19-28.
- Zanobetti, A., O'neill, M. S., Gronlund, C. J., & Schwartz, J. D. (2012). Summer temperature
 variability and long-term survival among elderly people with chronic disease.
- 489 Proceedings of the National Academy of Sciences, 109(17), 6608-6613.

490	Zhang, B., Li, G., Ma, Y., & Pan, X. (2018). Projection of temperature-related mortality due to
491	cardiovascular disease in Beijing under different climate change, population, and
492	adaptation scenarios. Environmental research, 162, 152-159.
493	Zhang, K., Chen, T. H., & Begley, C. E. (2015). Impact of the 2011 heat wave on mortality and
494	emergency department visits in Houston, Texas. Environmental Health, 14(1), 1-7.
495	Zottarelli, L. K., Sharif, H. O., Xu, X., & Sunil, T. S. (2021). Effects of social vulnerability and
496	heat index on emergency medical service incidents in San Antonio, Texas, in 2018.

497 Journal of Epidemiol & Community Health, 75(3), 271-276.