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This paper studies the dynamic asset allocation problem faced by an infinitively lived commodity-
based sovereign wealth fund under incomplete markets. Assuming that the fund receives a non-
tradable stream of commodity revenues until a predetermined date, the optimal consumption and
investment strategies are state and time-dependent. Using data from the Norwegian Petroleum Fund,
we find that the optimal demand for equity should decrease gradually from 60% to 40% over the
next 60 years. However, the solution is particularly sensitive to the correlation between oil and stock
price changes. We also estimate wealth-equivalent welfare losses, relative to the optimal rule, when
following alternative suboptimal investment rules.

Keywords: Optimal asset allocation; Sovereign wealth fund; Commodities; Income risk; Suboptimal
investments

JEL Classifications: E21, G11, G23, Q32

1. Introduction

Sovereign wealth funds (SWFs hereafter) are institutional
investors that engage in long-run investment strategies with
the objective to ensure a gradual transfer of wealth across
generations. Although these investment funds have existed
for decades, there has been a significant increase of SWFs
since 2000. The source of income of most SWFs comes
from commodity revenues and/or the accumulation of for-
eign exchange reserves. As of 2019, there were 48 different
commodity-based SWFs in the world administering US$4
trillion in assets (SWF Institute 2020), corresponding to
US$1,163 billion more than the estimated size of hedge funds
worldwide (Statista 2019), and to 5% of the global investment
industry (Fages et al. 2019)†. Since commodity prices are
extremely volatile (cf. Deaton and Laroque 1992), investors
face the challenge to design optimal investment strategies that
help them manage the associated income risk. To the extent
that commodity revenues are correlated with stock prices,

∗Corresponding author. Email: jcpalva@business.aau.dk
† A description of the investment behavior of SWFs in equity mar-
kets and their allocation strategies across industries and sectors is
provided by Miceli (2013).

investors have the possibility to hedge this volatility away by
adjusting their exposure to stocks.

In this paper, we study the optimal consumption-investment
decision of oil-based SWFs when the risk from its volatile rev-
enues is only partially hedgeable due to market incomplete-
ness. To do so, we use an otherwise standard strategic asset
allocation model with stochastic income similar to those in
Bodie et al. (1992), Heaton and Lucas (1997), Viceira (2001),
Campbell and Viceira (2002), Cocco et al. (2005), Munk
and Sørensen (2010), and Bosserhoff et al. (2022). How-
ever, since most SWFs are set up by countries interested in
sustaining a standard of living for all future generations, we
assume that the fund’s planning horizon is infinite, while the
commodity revenues are received only for a known fixed
number of years that is determined exogenously by insti-
tutional factors, e.g. political decisions following pressure
from constituents, changes in the production intensity of oil,
commodity depletion, etc. In order to distinguish the effects
of atemporal risk aversion from those due to intertemporal
substitution, we assume that the preferences of the SWF’s
manager over intermediate consumption are recursive as in
Duffie and Epstein (1992a, 1992b). In turn, this allows us
to reconcile high risk-taking induced by large risk premiums
with a low tolerance for volatile consumption. Moreover, all
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of the uncertainty in the income stream is assumed to come
from the stochastic behavior of oil prices.

To solve the dynamic portfolio problem faced by the SWF,
we invoke the principle of optimality (Bellman 1957) and
break the planning horizon according to the terminal date
of the commodity income flow. The resulting subproblems
are then solved backwards in time. First, we solve an infi-
nite horizon problem in which the SWF does not receive
any revenues. The optimal value function, as well as the lev-
els of investment and consumption for this problem, can be
obtained in closed form. Using the resulting indirect utility as
a terminal condition, we then solve a finite horizon problem
in which the SWF receives a stream of stochastic commod-
ity revenues for a predetermined number of years. Similar to
the case of asset allocation over the life cycle with uncertain
labor income, we find that the SWF’s optimal investment pro-
file is both state- and time-dependent. The optimal demand
for the risky asset includes an intertemporal hedging compo-
nent that depends on the correlation between risky assets and
commodity income. Negative (positive) values of this corre-
lation result in a decreasing (increasing) demand for stocks
over time that converges to a long-run value equal to the
(leveraged) Sharpe ratio of the risky asset.

To assess the degree of market incompleteness, we use
monthly data on the S&P500 index and the WTI price of crude
oil from 1973 to 2019 to estimate the correlation between
oil and stock price changes using a continuous-time vec-
tor autoregressive model following the maximum-likelihood
framework in Ait-Sahalia (2002, 2008). In line with previous
results in the literature, we find statistical evidence of a time-
varying correlation. Consistent with conventional wisdom,
and similar to the evidence reported by Jones and Kaul (1996),
Sadorsky (1999), Gorton and Rouwenhorst (2006), Lee and
Chiou (2011) and Bhardwaj et al. (2015), we find a neg-
ative, but low, average correlation of − 7% for the period
1973–2007. However, at the outset of the financial crisis that
led to the Great Recession, the correlation becomes posi-
tive and high. More specifically, for the period 2008–2019,
we estimate a statistically significant correlation coefficient
that reaches a value of around 30% by the end of 2018.
Similar results have been documented in Filis et al. (2011),
Buyuksahin and Robe (2014), Bernanke (2016), Lombardi
and Ravazzolo (2016) and Datta et al. (2021), who have
argued that this phenomenon could be the result of a general-
ized weakening of global aggregate demand, the growth in the
commodity-market activity, or the zero lower bound on nom-
inal interest rates. Consequently, we conclude that oil income
is not fully spanned by traded assets and hence its associated
risk cannot be fully hedged through the financial markets.
Although similar limits to diversification have been docu-
mented for long-term investors with stochastic labor income
(see Campbell 1996, Davis and Willen 2000, Campbell and
Viceira 2002), our estimates suggest that oil-based SWFs face
a covariance structure between asset returns and income that
is diametrically different: low correlation, and large volatil-
ity of income that exceeds that of stock prices. Therefore,
in contrast to the case of uncertain labor income with no
liquidity/investment constraints, it is no longer possible to
accurately approximate the optimal investment strategy for

oil-based SWF investors using the assumption of complete
markets (cf. Bick et al. 2009, Munk and Sørensen 2010).

In the presence of stochastic oil revenues and market
incompleteness, the finite horizon component of the model
does not admit a closed-form solution. Therefore, we resort
to numerical methods to approximate the optimal consump-
tion and investment decisions. In particular, we use the state
space reduction of Duffie et al. (1997), and the correspond-
ing finite difference representation introduced by Munk and
Sørensen (2010), which we implement numerically using the
method described in Gomez (2019). We calibrate our model
to match salient features of the Norwegian Government Pen-
sion Fund Global (GPFG), popularly known as the Petroleum
Fund. For a low and negative correlation between oil and
stock prices, similar to that observed between 1973 and 2007,
our quantitative results indicate that the SWF should allocate
around 60% of its financial wealth into stocks at the begin-
ning of the planning horizon and decrease it monotonically
thereafter to reach a value of 40% after 60 years. This initial
overshooting, relative to its long-run value, is the result of two
complementary effects: (i) a wealth or leverage effect from the
capitalized value of the future stream of commodity revenues,
and (ii) a positive hedging demand that accounts for 20% of
the total demand for stocks. This additional demand is primar-
ily driven by the high volatility of oil prices, and not by their
correlation with the risky asset. If, on the contrary, the correla-
tion is positive, the model implies a large recomposition of the
investment portfolio with a large fraction of wealth allocated
into the risk-free asset. In particular, with a correlation coef-
ficient of 30%, we find an initial allocation to the risky asset
of around 30% that should increase monotonically towards its
long-run value of 40%. In either case, the optimal investment
strategy goes hand-in-hand with a gradual transfer of wealth
into the economy as measured by a relatively constant optimal
consumption-to-wealth ratio that fluctuates between 2% and
3% per year. This consumption pattern is consistent with the
fiscal rule (handlingsregelen) introduced by the Norwegian
parliament in 2001 with the objective to spend oil revenues in
a gradual and controlled way that helps preventing any unde-
sirable overheating of the economy and/or the occurrence of a
Dutch disease. Lindset and Mork (2019) have recently shown
that such a smooth path is consistent with the government’s
desire for smoothness in taxes and public expenditures. As
a corollary to our quantitative experiments, we conclude that
if the correlation between stock and oil prices remains posi-
tive and large in the near future, the Norwegian GPFG should
consider lowering its exposure to equity. Our simulations sug-
gest that the current mandate on the stock/bond mix is not
compatible with an investment strategy that exploits all the
diversification possibilities in an optimal way, and instead
exposes the fund to otherwise hedgeable risks.

Our results relate to a number of recent contributions to the
study of asset allocation for oil-based SWFs. Scherer (2011)
studies the portfolio problem of a SWF fund that must
decide how to allocate its oil revenues into different asset
classes. Through the lens of a standard mean–variance anal-
ysis (Markowitz 1952), and assuming that the value of the
oil resources relative to the government’s aggregate wealth is
constant over time, he finds that the optimal demand for risky
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assets includes a hedging demand component that is a func-
tion of the oil wealth-to-financial wealth ratio, and of the cor-
relation between oil price changes and asset returns. He shows
that, when the set of investment opportunities includes assets
that correlate negatively with oil prices, the SWF should then
decrease its position in the risky asset as the oil reserves
decrease. However, his approach abstracts from the optimal
consumption-saving decision, and from the implications that
the finite nature of the commodity revenues might have on
the optimal investment strategy†. Closer to our approach is
the work by van den Bremer et al. (2016). They extend the
work in van den Bremer and der Ploeg (2013) to study the
role played by non-tradable commodity assets in the optimal
consumption and investment decisions of an infinitively lived
SWF that is assumed to receive a stream of oil income to
perpetuity. They also conclude that the optimal investment
profile of an SWF should take into account the amount of
underground wealth through a hedging demand component.
Moreover, they show that any undiversifiable risk should be
alleviated by an increase in precautionary savings against
current consumption. However, to study the implications of
their model under incomplete markets, they approximate the
optimal allocations by assuming that consumption is a lin-
ear function of wealth, a result that only holds if markets are
complete.

Next, we evaluate the welfare costs of not following an
investment strategy that optimally exploits the intertempo-
ral hedging opportunities available to the SWF. This exercise
is motivated by the investment mandate given to the Nor-
wegian GPFG according to which the equity/bond mix in
the aggregate portfolio is fixed. Currently, the fund’s port-
folio manager (The Norges Bank Investment Management,
NBIM) is allowed to invest between 60% and 80% of its
wealth in equities. What are the consequences of deviating
from the optimal investment strategy? Associated with a given
suboptimal policy, we answer this question by introducing a
measure of wealth-equivalent welfare compensation. The lat-
ter is defined as the percentage of additional initial financial
wealth that the government would need to transfer to the port-
folio administrator in order to achieve the same indirect utility
or welfare that could be otherwise obtained by following the
optimal investment strategy. In particular, we consider two
different suboptimal investment profiles: (i) a constant invest-
ment share, and (ii) and ad-hoc deterministic rule that fixes
the equity holdings in every period equal to the median opti-
mal investment share. Using our benchmark calibration with
a negative correlation between stock and oil prices, we find
that following a strategy that fixes the position in equities at
70% (the midpoint of the current mandate of the Norwegian
GPFG) would require a wealth compensation equivalent to

† Using monthly data for the period 1997–2008, the author does not
find any significant correlation between the nominal returns on the
MSCI World index and the nominal price of crude oil. Therefore,
he concludes that global equities do not provide a hedge against
fluctuations in oil prices. In the face of a similar insignificant cor-
relation, Døskeland (2007) proposed to use a cointegration approach
to identify the long-term relationship between financial assets and
non-tradable assets. When applied to the Norwegian case, he finds
a similar result: the government should increase its current (initial)
holdings in equity and reduce it over time.

12.5% more of the initial endowment. An alternative interpre-
tation of this result is that following a constant investment rule
leads to significant welfare losses. We show that these losses
can be considerably reduced by implementing instead a time-
varying, but ad-hoc, investment rule. For practical purposes,
this policy may be considered as a second-best policy in an
environment with institutional constraints that prevent the
SWF investor to hedge commodity fluctuations periodically.

We are not the first to report large welfare losses from
the implementation of suboptimal policies. Campbell and
Viceira (1999), find that failing to hedge in the presence
of time-varying risk premia leads to large welfare losses
relative to the optimal policy, specially for mildly risk-
averse investors with positive positions in equity. Similarly,
Gomes (2007) and Larsen and Munk (2012) report consid-
erable utility losses from ignoring the intertemporal hedging
opportunities for investors facing interest rate risk and stock
volatility risk. Finally, Bick et al. (2009) study the welfare
losses incurred by an investor with stochastic labor income
that uses the investment rule that would prevail under com-
plete markets when markets are in fact incomplete. They find
that the losses of following this misspecified suboptimal pol-
icy are at most 14% of the initial total wealth when the true
correlation between income and equities is zero, and drops to
3.2% if the correlation is 60%.

The remainder of the paper proceeds as follows. Section 2
provides a brief introduction and description of the Norwegian
GPFG, with a particular focus on the institutional framework it
faces and the investment strategy followed since its inception.
Section 3 formalizes the optimal allocation problem faced
by a commodity-based SWF and provides economic intu-
ition behind the optimal consumption and investment policies
when the oil income is both spanned and unspanned by the
financial market. In Section 4, we discuss the calibration of
the model and discuss the optimal allocations when markets
are incomplete. We also study the sensibility of the optimal
policies to changes in the correlation between stock and oil
prices, the investor’s coefficient of relative risk aversion, and
to different assumptions on the terminal date of the com-
modity income inflow. Section 5 studies the welfare costs of
following suboptimal policies, and Section 6 concludes.

2. The Norwegian sovereign wealth fund

Norway has one of the world’s largest established SWFs,
the Government Pension Fund Global (GPFG). In 2019, the
market value of the GPFG amounted to US$1,148 billion,
nearly 3.5 times the real GDP of mainland Norway,‡ and
about 26% larger in market value than the China Investment
Corporation which, according to the Sovereign Wealth Fund
Institute, is the second biggest SWF. Panel (a) in figure 1
shows the uninterrupted accumulation of wealth for the period
1998–2019.

The GPFG was created by the Norwegian Parliament in
1990 under the Government Pension Fund Act in order to

‡ According to Statistics Norway, mainland Norway refers to all the
domestic production activity with the exception of exploration of
crude oil and natural gas, transport via pipelines and ocean transport.
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Figure 1. Main facts about the GPFG (1998–2019). Panel (a) plots the market value of the GPFG in billions of NOK and as a fraction of
mainland real GDP; Panel (b) plots the fraction of the GPFG’s market value invested in equities; Panel (c) plots the total capital inflows (net
of managements costs) to the fund associated with oil revenues in billions of NOK and as a fraction of the GPFG’s market value of wealth;
Panel (d) plots the transfers from the GPFG to the Central Government as a fraction of the GPFC’s market value and as a fraction of the total
budgeted expenditures for the period 2006–2019.
Norges Bank Investment Management, Statistics Norway and Ministry of Finance.

ensure long-term responsible management of the revenues
generated from oil-related activities. Specifically, the objec-
tive of the fund is to manage the financial challenges posed
by an aging population and to serve as a countercyclical fis-
cal tool that can be used to neutralize declines in the price
of oil and in the economic activity in general. The Min-
istry of Finance has the overall responsibility for the fund’s
management. Accordingly, it issues a set of guidelines that
are executed by the fund’s Executive Board who defines an
investment policy that is implemented by the portfolio man-
ager. The Ministry’s guidelines delimit the types of risks that
the SWF can take, and the Executive Board acts consequently
by setting up an asset allocation strategy that distributes the
fund’s wealth into different asset classes.

In 1998 the Norges Bank Investment Management (NBIM)
was created to administer the fund’s portfolio. The NBIM
receives oil revenues in the form of transfers from the gov-
ernment and combines them with the fund’s own accumulated
wealth to implement the requirements defined by the Execu-
tive Board. Panel (b) in figure 1 shows the effective share of

wealth is invested in equity markets over the period 1998–
2019. This investment profile mimics the management guide-
lines set by the Ministry of Finance, who in 1998 set a cap on
the amount of wealth invested in stocks to 40%. In 2007, this
cap was increased such that the equity portfolio constitutes
between 60% and 80% of the total portfolio. The remain-
ing fraction of wealth is distributed between fixed income
(20–40%) and real estate assets (up to 7%).

The GPFG is set up such that two types of revenues are
transferred to NBIM directly: government oil revenues and
the fund’s return. Panel (c) shows the annual (net) inflows to
the NBIM for the period 1998–2019. Throughout the period,
the net transfers to the fund have decreased as a fraction of
the GPFG’s total wealth. As shown in figure 2, this behavior
is consistent with three factors: (i) the drop in the average real
price of oil observed from 2006, Panel (a); (ii) the decline
in the production of crude oil in Norway, Panel (b); and (iii)
the fall in the proved reserves of oil, Panel (c). All of these
factors have led to a reduced operating surplus from extraction
activities.
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Figure 2. Main components of oil revenues (1998–2018). Panel (a) plots the real price of oil per barrel in U.S. dollars as measured by the
WTI price index and deflated by the U.S. CPI base 2000=100 (Pt). Panel (b) plots the production of crude oil in Norway∗ (Qt). Panel (c)
plots the total oil revenues in U.S. dollars from oil production (Pt × Qt). Panel (d) plots the total proved reserves of underground oil available
at the end of a given year∗∗.
BP Statistical Review of World Energy (BP 2019)
∗Includes crude oil, shale oil, oil sands, condensates and NGLs. Excludes liquid fuels from other sources such as biomass and derivatives
of coal and natural gas. ∗∗Correspond to quantities that geological and engineering information indicates with reasonable certainty can be
recovered in the future from known reservoirs under existing economic and operating conditions.

In addition to the NBIM funding sources, the Ministry of
Finance established in 2001 a fiscal spending rule that stipu-
lates how to transfer the oil income and its associated returns
back to the Norwegian economy in a smooth and controlled
way. These transfers from NBIM to the Central Government
budget should follow the expected real return on the fund
and must be directed to finance non-oil fiscal budget deficits.
According to NBIM (2016): ‘The spending rule is not a legal
requirement, but rather a political economic yardstick which
secures the original fund objectives and strengthens the inter-
generational perspective.’ The transfer rule was initially set at
4% and in February of 2017, it was reduced to 3%. Panel (d) in
figure 1 plots a realized measure of the transfer rule computed
as the value of the non-oil deficits budgeted by the Ministry
of Finance as a fraction of the GPFG’s market value. For the
period 2006–2019, the transfers to the Central Government

averaged 3.4% of the fund’s wealth, and have become an
important source of funding of the government total expen-
ditures: in 2018 these transfers represented 18% of the total
government spending.

3. The allocation problem of a SWF investor

This section describes the problem faced by a price-taking
commodity SWF manager. Time is assumed to evolve con-
tinuously. Our framework is a stylized representation of the
decision problem faced by the Executive Board of the Nor-
wegian GPFG (the fund’s manager) introduced in Section 2.
We focus on the optimal asset allocation decisions made
by the fund’s manager who is also required to ensure a
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smooth stream of transfers to the government conditional on a
decreasing and finite path of commodity revenues. The man-
ager’s planning horizon is assumed to be infinite to capture the
long-term objective of building financial wealth that ensures
sustained transfers for future generations. Moreover, the fund
receives a stream of commodity income continuously over a
known fixed number of years that are determined exogenously
by the fund’s owner.

3.1. Description of the model

For a mathematical formulation of the problem faced by the
fund’s manager, we consider an economy where uncertainty is
described by a complete probability space (�, P,F) endowed
with a filtration F = {Ft}t≥0, representing the information
available at time t.

3.1.1. Investment opportunities. The fund’s manager has
costless access to two tradable assets. A money market
account with a constant, continuously compounded, real
return r>0 (risk-free bond), and a risky asset (stock mar-
ket index) with adapted price process S = (St)t≥0 that evolves
over time according to a geometric Brownian motion

dSt = μSt dt + σSSt dZS,t, S0 > 0, (1)

where μ denotes the asset’s constant instantaneous return,
σS > 0 is the constant volatility, and ZS,t is a standard Brow-
nian motion with respect to F. Thus, we assume that the
manager’s investment opportunity set is constant.

3.1.2. Oil income. Assuming zero exploration (and discov-
eries) of new reserves, the availability of the natural resource
Qt decreases exogenously over time at a constant extraction
rate κQ > 0†, i.e.

dQt = −κQQt dt, Q0 > 0. (2)

The price per unit of the commodity is given by the adapted
price process P = (Pt)t≥0 with dynamics described by a geo-
metric Brownian motion with drift rate κP, and constant
volatility σP > 0,

dPt = κPPt dt + σPPt

(
ρPS dZS,t +

√
1 − ρ2

PS dZP,t

)
,

P0 > 0, (3)

where ZP,t is a standard Brownian motion with respect to F

and independent of ZS,t. Moreover, 〈ZS , ZP〉t = ρPSt where
|ρPS| ≤ 1 denotes the instantaneous correlation between the
return to the risky asset and the change in the commodity
price. As mentioned earlier, we assume throughout that the
SWF takes the price of the commodity as given. The price is
determined in the international markets and unaffected by the
extraction rate.

† Notice that the commodity converges to zero asymptotically but
never gets fully depleted in finite time.

Let Yt := PtQt denote the fund’s continuous stream of non-
negative income. In the following, we assume that the fund
receives a continuous stream of exogenously given commod-
ity income until the known time T̂ ≥ 0. Itô’s Lemma implies
that the fund’s revenue process Y = (Yt)t≥0 evolves according
to

dYt = κYt dt + σPYt

(
ρPS dZS,t +

√
1 − ρ2

PS dZP,t

)
,

Y0 > 0, (4)

for t ∈ (0, T̂], and where κ = (κP − κQ) represents the
expected income growth. For t > T̂ , Yt = 0. Equation (4)
assumes that all the uncertainty in the oil income arises from
the exogenous variation in the commodity price set in the
world markets.

In the particular case |ρPS| = 1, financial markets are com-
plete and all the uncertainty in the oil income process is
spanned by the stock price process. In other words, the stream
of revenues can be perfectly replicated by some trading strat-
egy in the financial markets and hence, valued as a traded
asset. If |ρPS| < 1, the markets are said to be incomplete and
the income risk is not fully spanned by financial markets.

3.1.3. Preferences. We assume that the manager has recur-
sive preferences as first proposed by Kreps and Porteus
(1978), Epstein and Zin (1989) and Weil (1990), and extended
to continuous time by Duffie and Epstein (1992a, 1992b).
This allows us to disentangle the effects that risk aversion
and intertemporal substitution have separately on the opti-
mal investment and consumption decisions. In particular, the
preferences of the fund’s manager are given by

Vt = Et

[∫ ∞

t
f (Cs, Vs) ds

]
, (5)

where f (Cs, Vs) is a normalized aggregator of the current con-
sumption rate, Cs, and utility, Vs. The process V = (Vt)t≥0 is
referred to as the continuation value process associated with
C. In its more general form, the aggregator is defined as

f (C, V ) = βθV

⎧⎨⎩
[

C

[(1 − γ )V ]
1

1−γ

]1− 1
ψ

− 1

⎫⎬⎭ , (6)

where β > 0 is the rate of time preference, γ > 0 denotes the
coefficient of relative risk aversion (RRA) towards atemporal
bets, ψ > 0 denotes the elasticity of intertemporal substitu-
tion (EIS), so that 1/ψ can be understood as aversion towards
intertemporal fluctuations, and θ = (1 − γ )/(1 − ψ−1). The
normalized aggregator exhibits the property that for γ > 1/ψ ,
the investor prefers early over later resolution of uncertainty.
The ability to separate the investor’s risk aversion from her
aversion to intertemporal substitution is important in order to
generate a smooth path for the consumption-to-wealth ratio
that emulates the intergenerational concerns of the govern-
ment without affecting the short-term allocation strategies that
can be achieved through portfolio diversification. If γ = 1/ψ
it follows that θ = 1 which makes the recursion in (6) linear,
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and the preferences in (5) collapse to the usual time-additive
utility model. In this case, it is no longer possible to separately
investigate how the manager’s optimal portfolio is affected by
her attitudes towards risk without affecting at the same time
intertemporal choices.

3.1.4. The manager’s decision problem. Let Wt denote the
fund’s financial wealth at time t, i.e. the value of the portfolio
of financial assets held at time t. Given an initial endow-
ment of financial wealth, W0 = w > 0, and an initial level
of oil income, Y0 = y > 0, the fund’s manager must choose
consumption rates C = (Ct)t≥0, and investment strategy α =
(αt)t≥0, with αt denoting the fraction of financial wealth
invested in the risky asset at time t, and 1 − αt the fraction of
wealth invested in the risk-free asset. The stochastic variables
Ct and αt are assumed to be Ft-measurable, so the processes
C and α are adapted. Moreover, we assume that (i) Ct ≥ 0, (ii)
the process C is such that there exists a uniquely determined
semimartingale V = (Vt)t≥0 satisfying (5); (iii) the fund is
able to continuously rebalance its portfolio, and does not face
restrictions on borrowing or short sales, (iv) conditional on
the instantaneous flow of revenues, the investment strategy α
is self-financing and supports the consumption plan C, and
(iv) the manager knows the stochastic processes that drive
the oil and stock prices. The set A of all consumption and
investment strategies that satisfy the above conditions on the
interval [0, ∞] is said to be admissible. For a given consump-
tion and investment strategies (C,α) ∈ A, the fund’s financial
wealth evolves according to

dWt = (
μP,tWt − Ct + Yt

)
dt + σP,tWt dZS,t, W0 = w > 0

(7)
where μP,t := αt(μ− r)+ r and σP,t := αtσS represent,
respectively, the instantaneous expected return and volatility
per unit of financial wealth on the composite portfolio held by
the fund, and where Yt solves (4) with Yt = 0 for all t > T̂ .

Then, the problem faced by the fund’s manager is to find the
consumption and investment strategies (C,α) that maximize
the present discounted value of her non-expected recursive
utility†. In other words, to compute for all t ∈ [0, ∞)

Jt = max
(C,α)∈A

Vt, (8)

with Vt given in (5), and where Jt := J(Wt, Yt) is the indirect
utility or value function.

† Note that the fund could also choose derivatives instruments, e.g.
futures and forward contracts, to hedge unspanned oil income risk.
This is an interesting avenue to explore; however, we abstain from
doing it for several reasons. First, we do not observe in practice
NBIM taking positions in futures contracts on oil on behalf of the
Norwegian GPFG. Marking to market of daily profit and losses for a
large number of contracts in oil may lead to liquidity constraints, a
point made in van den Bremer et al. (2016). Second, the institutional
mandate of the Norwegian GPFG requires NBIM to exclusively
focus on the risk of the portfolio (see Norges Bank Investment Man-
agement 2022). Third, it may be that because of the sheer size of
the portfolio that NBIM manages, the futures market is not able to
provide sufficient liquidity.

3.2. Solution under complete and incomplete markets

To solve the problem faced by the fund’s manager we
invoke the principle of optimality to break the infinite horizon
implicit in problem in (8) into two subproblems according to
the predetermined terminal time of income T̂ , i.e.

J0 = max
(C,α)∈At

E0

[∫ T̂

0
f (Ct, Jt) dt + J

(
WT̂

)]
, (9)

where At ⊆ A is the set of admissible strategies for t ∈ [0, T̂].
Thus for t ≤ T̂ , the manager solves a finite horizon asset
allocation problem with stochastic income and terminal util-
ity J(WT̂ ), where WT̂ represents the fund’s financial wealth
at time T̂‡. For t > T̂ , the manager no longer receives oil
income and faces the following infinite horizon allocation
problem (cf. Svensson 1989, Campbell and Viceira 2002, and
Hsuku 2007)

J
(
WT̂

) = max
(C,α)∈A

ET̂

[∫ ∞

T̂
f (Cs, Js) ds

]
. (10)

Therefore, our solution strategy consists of solving the alloca-
tion problem in two stages. In the first stage, we compute the
optimal consumption and investment policies that will prevail
for t > T̂ . The second stage uses the value of the optimal pro-
gram at time T̂ found in the first stage as a terminal condition
to solve for the optimal allocations for all 0 ≤ t ≤ T̂ . Notice
that since the investment horizon is infinite, the optimal value
of J(WT̂ ) (from the first stage) ensures that the wealth at T̂ is
the optimal transfer of resources to future generations (those
for which t > T̂).

3.2.1. First stage. For t > T̂ , it follows that Yt = 0 and the
problem faced by the fund’s manager becomes a standard infi-
nite horizon dynamic asset allocation problem with constant
investment opportunities and complete financial markets. As
shown in Appendix 1, the Hamilton–Jacobi–Bellman (HJB)
equation for this problem is

0 = max
{C,α}∈A

{
f (C, J)+ JW [rW + (μ− r) αW − C]

+ 1

2
σ 2

S JWW (αW)2
}

, (11)

with JW := ∂J(W)/∂W and JWW := ∂2J(W)/∂W 2, and
where we have suppressed time indexes to reflect the recur-
sive nature of the corresponding dynamic programming prob-
lem. The next proposition summarizes the closed-form solu-
tion to the first stage problem.

‡ The stochastic optimal control problem in (9) is equivalent to a
finite horizon dynamic asset allocation problem with terminal util-
ity J(WT̂ ) = A(W1−γ

T̂
/1 − γ ). The constant A, which measures the

relative utility weight of wealth at instant T̂ and intermediate con-
sumption, is then chosen to be consistent with the assumption that
the fund manager optimizes the intertemporal utility of consumption
even after the flow of revenues terminates.
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Proposition 3.1 In the absence of commodity revenues, i.e.
Yt = 0, and constant investment opportunities, the manager’s
optimal value function for any t ≥ T̂ is given by

J (W) = βθ

1 − γ
G

− θ
ψ∞ W 1−γ , (12)

where the constant G∞ is given by

G∞ = βψ + (1 − ψ) r + (1 − ψ)

2γ

(
μ− r

σS

)2

. (13)

The optimal share of financial wealth invested in the risky
asset is given by

αt = 1

γ

μ− r

σ 2
S

, (14)

while the optimal consumption-to-financial wealth ratio is

Ct

Wt
= G∞ = rP + ψ (β − rP) , (15)

where rP := μP − γ

2 σ
2
P is the (risk-adjusted) expected return

on the composite portfolio (see van den Bremer et al. 2016
and Wang et al. 2016).

Proof See Appendix 1. �

Equation (14) suggests that the optimal demand for the risky
asset is constant for t ≥ T̂ and completely characterized by the
market price of risk (the ratio of the expected risk premium
to the asset’s volatility) rescaled by the asset’s volatility, and
the manager’s coefficient of RRA. It is also independent of
the EIS and the subjective discount rate. The higher the coef-
ficient of RRA, the lower the investment in stocks and the
higher the investment in the risk-free asset (see Merton 1969).

On the other hand, the optimal consumption is given by
the modified Keynes–Ramsey rule in (15). It suggests that
optimal consumption is a linear function of the fund’s finan-
cial wealth. The marginal propensity to consume is constant,
and its value is determined by the coefficient of RRA, the
manager’s EIS, and the subjective discount rate.

3.2.2. Second stage. The problem faced by the fund’s man-
ager from the perspective of time t < T̂ corresponds to a finite
horizon allocation problem with stochastic income similar to
that in Munk and Sørensen (2010) and Wang et al. (2016) with
terminal utility given by the power utility of financial wealth
in (12) evaluated at t = T̂ . As shown in Appendix 2, the HJB
equation for this problem is

0 = max
C,α

{
f (C, J)+ Jt + JW [rW + α (μ− r)W + Y − C]

+ 1

2
σ 2

S (αW)2 JWW + κYJY

+ 1

2
σ 2

PY 2JYY + σSσPρPS (αW) YJWY

}
, (16)

where Jt := ∂J(t, W , Y )/∂t, JY := ∂J(t, W , Y )/∂Y , JYY :=
∂2J(t, W , Y )/∂Y 2, and JWY := ∂2J(t, W , Y )/∂W∂Y . The first-
order conditions for an interior solution for any t < T̂ are

given by

Ct

Wt
=
(
β

JW

)ψ [(1 − γ ) J]
1−ψγ
1−γ

Wt
(17)

αt = 1

−WtJWW
JW

μ− r

σ 2
S︸ ︷︷ ︸

Myopic demand

+ YtJWY

JW

1

−WtJWW
JW

σPρPS

σS︸ ︷︷ ︸
Hedging demand

. (18)

Equation (17) results from the standard envelope condition
fC = JW . Accordingly, the optimal consumption-to-financial
wealth ratio is such that the marginal benefit of an additional
unit of consumption is equal to the marginal utility of an addi-
tional unit of financial wealth. Equation (18) determines the
optimal share of financial wealth allocated to the risky asset
as the sum of two components. The first term, usually referred
to as the myopic or speculative demand, corresponds to the
investment strategy that a manager with a short investment
horizon will follow, i.e. an investor that ignores what hap-
pens beyond the immediate next instant. It is defined by the
standard mean–variance analysis of Markowitz (1952) that
suggest that the demand for risky assets should be propor-
tional to the asset’s risk premium over the risk-free asset,
(μ− r), and inversely proportional to the asset’s volatility,
σS , and the investor’s risk aversion captured by the curvature
of the value function, −WJWW/JW .

The second term, usually referred to as intertemporal hedg-
ing demand or excess risky demand, represents the additional
demand required by an investor with a long investment hori-
zon in order to hedge against the risk of unexpected changes
in the commodity income that cannot be fully eliminated (see
Merton 1969, 1971, 1973). It is determined by the volatility
of income, σP, and its correlation with the stock returns, ρPS ,
the manager’s coefficient of RRA, and his aversion to income
risk as measured by YJWY/JW . Importantly, this component
suggests that the investor should increase her holding of the
risky asset for increased levels of aversion to income risk and
whenever its returns co-vary negatively with changes in the
commodity income.

As seen from (17) and (18), the solutions to the optimal
consumption and investment shares depend on the unknown
time-dependent value function J(t, W , Y ). When financial
markets are incomplete, i.e. for |ρPS| < 1, no closed-form
solution is available, and we need to resort to numerical
methods in order to approximate the optimal allocations.
However, under the simplifying assumption of complete mar-
kets, i.e. |ρPS| = 1, the oil income can be valued as a stream
of dividends which allows us to derive an analytical solution.
Although this assumption is challenged by the empirically
observed correlation between stock and oil prices, we now
make use of the complete market solution to build the eco-
nomic intuition on the main determinants of the optimal
consumption and investment decisions when oil income is not
perfectly spanned by the stock market. However, our main
results are computed under the assumption of incomplete
markets.

3.2.3. Complete market solution. Let us first define Ot :=
O(Yt, t; T̂) to be the time t value of the oil wealth, i.e. the



Optimal asset allocation for commodity sovereign wealth funds 479

present discounted value of all future oil income transfers to
the fund’s manager.

Lemma 3.1 (Oil wealth under complete financial markets)
Assume a complete financial market, i.e. |ρPS| = 1. Then, the
fund’s manager oil wealth at time t is given by

O
(

Yt, t; T̂
)

= YtM
(

t; T̂
)

, ∀t < T̂ . (19)

The time-dependent function M(t; T̂) defines the commodity
income multiplier

M
(

t; T̂
)

= 1

r − κ ± σPλ

[
1 − exp

{
−
(

r − κ ± σPλ
)(

T̂ − t
)}]

,

(20)

for (r − κ ± σPλ) �= 0, and where λ = (μ− r)/σS is the mar-
ket price of risk. For t ≥ T̂ the oil income is zero, Yt = 0, and
thus O(Yt, t; T̂) = 0.

Proof See Appendix A.2. �

Lemma 3.1 shows that when markets are complete it is pos-
sible to decompose the level of oil wealth as the product
between the current level of oil income, Yt, and the time-
dependent income multiplier, M(t; T̂). For a given T̂ , the oil
wealth decreases as the fund approaches the income terminal
date at a rate that depends on the financial market returns, the
expected growth rate of oil income, and the volatility of oil
income. Furthermore, the oil wealth is higher for an income
stream that is negatively correlated with the stock market,
than for a similar income stream, but positively correlated
with the stock market. Given a fixed T̂ , a positive (nega-
tive) correlation implies that the future expected income will
be discounted at a rate higher (lower) than the return on the
risk-free asset.

Proposition 3.2 Assume a complete financial market, i.e.
|ρPS| = 1. Let YtM(t; T̂) denote the market value of the
fund’s oil wealth at time t. Then, the optimal consumption-
to-financial wealth ratio for all t < T̂ is given by

Ct

Wt
= G∞

(
1 + Yt

Wt
M
(

t; T̂
))

, (21)

with G∞ is given in (13). The optimal share of financial wealth
invested in the risky asset for all t < T̂ is

αt = 1

γ

(
μ− r

σ 2
S

)(
1 + Yt

Wt
M
(

t; T̂
))

− Yt

Wt
M
(

t; T̂
) σPρPS

σS
. (22)

Proof See Appendix A.2. �

The optimal consumption is given by the modified Keynes–
Ramsey rule in (21). In the presence of stochastic oil income,
consumption at a given point in time is linear in the fund’s

total wealth, (Wt + Ot). The marginal propensity to con-
sume out of total wealth is constant, and its determinants are
the same as in the case of no oil wealth. However, using
Lemma 3.1 it is straightforward to show that the propen-
sity to consume out of income is increasing in the financial
wealth-to-oil income ratio, Wt/Yt, and the expected income
growth rate (oil income multiplier), and decreasing in the cur-
rent income rate. As opposed to the case Yt = 0, the optimal
consumption-to-financial wealth ratio is no longer constant.
Instead, the marginal propensity to consume out of the finan-
cial wealth will fall over time in line with the decrease in the
oil wealth-to-financial wealth ratio. As the fund’s oil wealth
runs out over time, the consumption-to-financial wealth ratio
converges to the constant level given in (15).

The first term on the right-hand side of (22) is the myopic
demand for the risky asset, while the second term is the
intertemporal hedging demand. Similar to the case without
income, the optimal investment share is independent of the
EIS. However, the presence of stochastic oil income (σP > 0)
will have a magnifying effect on the investment share through
the intertemporal hedging component, as long as the commod-
ity income is correlated with the returns of the risky asset,
ρPS �= 0. The direction of this effect will depend on the sign
of the instantaneous correlation. A negative (positive) corre-
lation implies a positive (negative) hedging demand. Impor-
tantly, the optimal investment share is no longer constant over
time. In particular, the trajectory depends on the path of the oil
wealth-to-financial wealth ratio, Ot/Wt, and it will converge
to the constant level in (14) as time approaches the terminal
date, T̂ . This result also holds for the case of a deterministic
stream of income (σP = 0), or a stochastic stream of income
that is uncorrelated with asset returns (ρPS = 0). The optimal
demand for the risky asset in (22) can be alternatively written
as

αt = 1

γ

(
μ− r

σ 2
S

)
+
(

1

γ

(
μ− r

σ 2
S

)
− σPρPS

σS

)
Yt

Wt
M
(

t; T̂
)

,

(23)
where the first term is identical to the optimal investment
without income, and the second term represents the effect of
commodity income on the optimal investment strategy. Con-
sequently, as long as the oil wealth-to-financial wealth ratio is
positive, the convergence of the optimal investment strategy
to its long-run value will depend on the coefficient of RRA,
the expected excess return, and the correlation coefficient. For
(μ− r)/σS > γσPρPS , the convergence will be from above:
if the expected excess return exceeds the covariance between
the stock and oil prices, the fund’s manager should decrease
the fraction of financial wealth invested in the stock market as
t → T̂ . Furthermore, low values of the coefficient of RRA are
associated with an intertemporal demand for the risky asset
that exhibits larger deviations from the long-run value along
its transition.

3.2.4. Incomplete market solution. Whenever† |ρPS| < 1,
it is no longer possible to value the oil income as a traded

† To bring down the exposure to income volatility one could fol-
low the ideas of Bick et al. (2009, 2013) and introduce an additional
traded asset (e.g. derivative) to ‘artificially’ complete the market (see
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asset and thus the portfolio strategy in Proposition 3.2 turns
out to be suboptimal. In particular, it will overestimate the
hedging demand component by incorrectly assuming that the
income risk can be fully replicated in the financial markets.
This will lead to higher investment shares and lower con-
sumption rates. For the case of an investor with time-additive
preferences (θ = 1) and stochastic labor income, Munk and
Sørensen (2010) show that the complete market solution can
be used to approximate the optimal allocations in incomplete
markets when the investor does not face liquidity nor invest-
ment constraints. The reason is that although the allocation
policies are suboptimal, they imply small utility losses even
for small correlations between income and asset prices. How-
ever, their recommendation does not carry to the case of a
commodity SWF like the one studied in this paper. Even
though the correlation coefficient between the price of oil and
the price of equity is low, the high volatility of the oil price
will result in a portfolio weight on the risky asset that is unrea-
sonable high relative that suggested by the optimal strategy.
This, in turn, can lead to large utility losses from implement-
ing suboptimal allocations due to an excessive exposure to
risk.

To characterize the model’s optimal policies when oil
income is not perfectly hedgeable we use a finite difference
approach based on the work in Gomez (2019). In particu-
lar, the solution to the HJB equation in (16) is approximated
backwards in time starting from the terminal value given
by (12) evaluated at t = T̂ . At each point in time, we max-
imize the HJB equation over all possible consumption and
investment choices along a predefined grid for the state vari-
ables. To obtain a stable and more efficient approximation of
the unknown value function, we use the state space reduction
of Duffie et al. (1997) to reduce the number of state variables
from two to one by exploiting the homogeneity properties of
the HJB equation. A complete description of the state reduc-
tion problem as well as of the finite difference solution method
can be found in Appendix A.1.

4. Quantitative model under incomplete markets

This section explores the quantitative predictions of the
model. We begin our analysis by calibrating the model param-
eters. Using these values, we compute the optimal value
function, as well as the consumption and investment poli-
cies, that determine the long-run behavior of the fund in the
absence of oil income. We then approximate the solution to
the finite horizon problem to obtain the optimal consump-
tion and investment profiles in the presence of a continuous
stream of oil income. We end the section by investigating the
sensitivity of our results to different values of the correlation
coefficient and the coefficient of RRA, as well as to different
assumptions on the income terminal date.

footnote 5). The resulting hedging strategy provides additional expo-
sure to oil income risk compared with a strategy where the fund only
invests in one risky asset. Extensive research has shown that deriva-
tive securities can be used to complete financial markets and improve
welfare (see Liu and Pan 2003 and Hsuku 2007 and the references
therein.).

Table 1. Parameter values.

Panel (a): Estimated parameters, θ1

Description Parameter MLE
Standard

error

Drift of oil price growth κP 0.0973 0.0606
Drift stock price growth μ 0.0413 0.0264
Diffusion oil price growth σP 0.3522 0.0908
Diffusion stock price growth σS 0.1592 0.0087
Corr. stock price and oil price

growth
ρPS −0.0676 0.0403

Panel (b): Calibrated parameters, θ2

Description Parameter Value

Risk-free rate r 0.011
Discount rate β 0.020
Risk aversion coefficient γ 3.000
Elasticity of intertemporal

substitution
ψ 2.000

Extraction rate κQ 0.078
Terminal date of income flow (years) T̂ 60

Note: Panel (a) reports the maximum-likelihood estimates and asso-
ciated standard errors for the parameters that describe the dynamics
of the exogenous driving forces in the economy. The estimation uses
monthly data on U.S. real stock prices and real WTI oil prices for the
period 1973–2007. Effective number of observations is 420. Panel
(b) report calibrated parameter values that describe the investor’s
preferences and some additional parameters that replicate salient
features of the investment problem faced by the Norwegian SWF.

4.1. Calibration

We separate the parameters of the model into two groups,
� = {θ1, θ2}�. The first group includes all the parameters
associated with the exogenous processes that drive the dynam-
ics of the stock and oil prices, θ1 = {μ, σS , ρPS , κP, σP}�.
The second group includes those parameters related to the
fund’s preferences, the return on the market’s risk-free asset,
and some additional parameters associated to the genera-
tion of income, θ2 = {β, γ ,ψ , r, κQ, T̂}�. Table 1 summarizes
our benchmark calibration. Time is measured in years and
parameters should be interpreted accordingly.

4.1.1. Estimated parameters (θ1). In the following, we
assume that the risky asset is represented by the U.S. stock
market, and the oil price is gauged by the West Texas Inter-
mediate (WTI) price of crude oil. To measure stock prices,
we use monthly nominal returns on the value-weighted index
excluding distribution from CRSP, while the monthly WTI
price of oil is retrieved from the FRED database. All prices
in the model are real. We use the monthly value of the Con-
sumer Price Index from the U.S. Bureau of Labor Statistics as
the deflator. Panel (a) in figure 3 illustrates the monthly year-
over-year (yoy) returns for each of the variables for the period
1974:1-2018:12.

Let Xt = (St, Pt)
�. According to (1) and (3), the price

dynamics can be represented by the following system of
Markovian stochastic differential equations (SDE)

d �Xt = μ
( �Xt; θ1

)
dt + σ

( �Xt; θ1
)

d�Zt, (24)
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Figure 3. Crude oil and equity prices (1974:1–2018:12). Panel (a) plots the monthly year-over-year (yoy) change in the real price of stocks
(VWI CRSP) and crude oil (WTI). Panel (b) plots the estimated instantaneous correlation between the real price of stocks and crude oil
using a 10 years estimation rolling window. Dashed areas represent 95% confidence intervals. The dashed vertical line delimits the end of
the sample used in the maximum-likelihood estimation (December 2017).

where Zt = (ZS,t, ZP,t)
� is a vector of independent standard

Brownian motions, and where

μ
( �Xt; θ1

) =
[
μSt

κPPt

]
,

σ
( �Xt; θ1

) =
[
σSSt 0

σPρPSPt σP

√
1 − ρ2

PSPt

]
.

Let P( �X0, �X, . . . , �Xn) denote the joint density of a sam-
ple of n discrete measurements �X = {�Xi}n

i=0, where  =
1/12 denotes the fixed (monthly) observation frequency.
Using the properties of joint densities, and the Markovian
nature of the process in (24), it is possible to decompose
P( �X0, �X, . . . , �Xn) as the product of a conditional and a
marginal density

P
( �X0, �X, . . . , �Xn; θ1

) = P
( �X0; θ1

) n∏
i=1

P
( �Xi | �X(i−1)

)
.

(25)
Ignoring the dependence on the initial observation, P( �X0; θ1),
and taking logarithms, the log-likelihood of the data reads

Ln
( �X ; θ1

) =
n∑

i=1

logP
( �Xi | �X(i−1); θ1

)
, (26)

whilst the maximum-likelihood estimator (MLE) of θ1 is
defined as

θ̂1 = arg max
θ1

Ln
(
θ1; �X ) . (27)

In general, the conditional probability density P( �Xi| �X(i−1);
θ1), and hence the log-likelihood function, is not available

in closed form. We follow Ait-Sahalia (2002, 2008) and
approximate the log-likelihood function in (26) by

Ln
( �X ; θ1

) ≈ −1

2
log |�( �Xt; θ1)| + Ln

(�Y ; θ1
)

, (28)

where � = σσ� is the infinitesimal variance–covariance of
the stochastic process �X , and Ln(�Y ; θ1) is the first-order
closed-form approximation to the log-likelihood function of
the transformed unitary diffusion process Y = {�Yi}n

i=0 given
by†

Ln
(�Y ; θ1

) = − log (2π)+ C(−1)
�Y (�Y | �Y0; θ1)



+ C(0)
�Y (�Y | �Y0; θ1)+ C(1)

�Y (�Y | �Y0; θ1).

The approximation constants C(−1)
�Y , C(0)

�Y and C(1)
�Y are pro-

vided in Ait-Sahalia (2008, Theorem 1). The approximated
log-likelihood function in (28) converges to the true log-
likelihood function of the data as  → 0, and thus all the
standard statistical properties of the (quasi-) MLE, including
classical inference, carry over.

Panel (a) in table 1 reports the estimation results for the
model in (24) using monthly data that span the period from
1973:1–2007:12. It also presents standard errors robust to
autocorrelation and heteroskedasticity. The estimated (annual)
volatilities of the stock and oil price changes are 15.92% and
35.22%, respectively, while the instantaneous drift param-
eters, although not statistically significant at conventional
confidence levels, imply an annual expected stock return

† The multivariate diffusion in (24) is reducible in the sense that
it is possible to transform the diffusion process �X into a diffusion
process �Y with diffusion matrix equal to the identity matrix (see
Ait-Sahalia 2008).
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of 4.13%, and an annual expected growth of oil price of
9.73%. The estimated instantaneous correlation between stock
and oil prices indicates a negative and statistically signifi-
cant association equal to − 6.76% (per annum) during this
period. Our estimate is consistent with the evidence pro-
vided in Jones and Kaul (1996), Sadorsky (1999), Gorton and
Rouwenhorst (2006), Lee and Chiou (2011) and Bhardwaj et
al. (2015) for the period prior to the Great Recession.

Although the negative correlation between oil prices and
equity is in line with conventional wisdom, recent evidence
suggests that this correlation has increased considerably dur-
ing the last decade. Buyuksahin and Robe (2014) attribute this
increase to the observed growth in commodity-market activity
led by hedge funds but also to macroeconomic fundamentals
and the TED spread. Lombardi and Ravazzolo (2016) pro-
vide further evidence of the higher correlation observed at
the onset of the financial crisis of 2008. Additionally, Datta
et al. (2021) argue that the increase in the oil-stock price
correlation that started in 2008 can be explained by the nom-
inal interest rates being constrained by the zero lower bound.
To verify this claim, we extend our sample period until the
end of 2018 and, using the maximum-likelihood procedure
described above, produce rolling estimates using a fixed win-
dow of 10 years. Panel (b) in figure 3 reports the rolling
estimates together with 95% confidence bands. The results
suggest that the long-term co-movement between oil price
changes and stock price changes is not constant. Instead, the
estimates suggest three different phases over the last 45 years:
(i) a period of zero correlation between 1973 and 1989; (ii)
a period of negative correlation between 1990 and 2007; and
(iii) a period of positive correlation from 2008 until today. We
use the variation in these correlations to perform a sensitivity
analysis.

4.1.2. Fixed parameters (θ2). The calibration of the second
group of parameters is summarized in Panel (b) of table 1. We
set the subjective discount rate to β = 2% per year, the coeffi-
cient of RRA to γ = 3.0 and the EIS toψ = 2.0. These values
are standard in the asset pricing and asset allocation litera-
ture and, as it is shown below, imply a relatively smooth path
for the consumption-to-financial wealth ratio that is consistent
with the spending rule mandate of the Norwegian SWF.

The exogenously given income terminal date is calibrated
to T̂ = 60 years to resemble the number of years that it would
take to exhaust 99% of the oil reserves available in 2018 under
the following two assumptions: (i) zero exploration and dis-
coveries of new reserves, and (ii) a constant extraction rate of
κQ = 7.8% per year, consistent with the 2018 production-to-
reserves ratio reported by BP (2019) which, together with the
estimated average growth rate of oil price, implies an expected
oil income growth rate of κ = 1.9% per year.

Finally, the return on the risk-free asset is calibrated to the
sample average of the annualized real return on the 90-day
U.S. Treasury bill. For the postwar period, this corresponds to
r = 1.11% per year. Together with the estimated values for
the equity’s expected return, μ, and volatility, σS , our cal-
ibration implies that starting from year T̂ = 60, the fund’s
manager should invest 40% of her financial wealth on the

risky asset and consume 2.3% of her financial wealth each
period in perpetuity.

4.2. Optimal consumption and investment policies

In the following, we use the benchmark calibration in table 1
to illustrate the solution of the model when the oil income
is not fully spanned by the financial markets. Due to mar-
ket incompleteness, we approximate the solution numerically
for all t ∈ [0, T̂]. We then simulate each of the variables in
the model and report the median value over 10,000 samples.
In the simulations, we assume an initial financial wealth-
to-oil income ratio equal to W0/Y0 = 9.4, a number that is
consistent with that reported by the Norwegian GPFG in 2018.

Figure 4 plots the optimal path for selected variables for
all t ∈ [0, T̂], together with intervals around the median that
represent the 15th and 85th percentiles of the simulated dis-
tributions. Panel (a) illustrates the optimal portfolio share of
financial wealth invested in equity. The results indicate that
the fund’s manager should initially invest 60% of her finan-
cial wealth into stocks, a figure that is 20% above the optimal
share that would prevail in the long run. In fact, as t → T̂ the
fund’s manager should decrease gradually its position in the
risky asset until she reaches a long-run allocation of 40% in
60 years.

The excess demand for the risky asset, relative to the long-
run position, is the result of two complementary effects. First,
a wealth or leverage effect from the capitalized value of
all future oil income transferred to the fund, i.e. the non-
tradable ‘underground’ oil wealth available at the beginning
of the investment horizon. Second, a positive hedging demand
that, given our benchmark calibration, is primarily driven by
the high volatility of oil prices, and not by their correlation
with the risky asset. Panel (b) plots this hedging component
using the decomposition in (18). We see that the intertempo-
ral hedging demand accounts for nearly 12% of the additional
financial wealth invested in equity markets at the beginning
of the investment horizon. This additional demand creates a
hedge against fluctuations in oil prices and thus in the fund’s
revenues. Similar to the overall investment share in equity,
the hedging demand decreases over time hand-in-hand with
the oil wealth-to-financial wealth ratio. In the long run, when
the fund stops receiving oil revenues, the hedging demand
becomes zero.

Our results suggest that the optimal portfolio profile is in
sharp contrast with the effective investment strategy executed
by the Norwegian GPFG between 1998 and 2007 shown in
figure 1. In a period characterized by a low and negative cor-
relation between stock and oil prices, the fund’s investment
strategy was rather conservative. Although in line with the
mandate given by the Executive Board to the NBIM, the share
of financial wealth invested in equity remained relatively
constant at around 40%.

The median consumption-to-financial wealth ratio is illus-
trated in Panel (c). Our benchmark calibration produces a
relatively stable optimal spending rule over time as a func-
tion of the fund’s financial wealth. At the beginning of the
investment horizon, when the total wealth is large, the optimal
consumption is 2.7% of the fund’s financial wealth. After 10
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Figure 4. Optimal strategies under incomplete markets. Panels (a)–(d) plot, respectively, the optimal share of financial wealth invested in
equity, the hedging demand as a fraction of financial wealth, the optimal consumption-to-financial wealth ratio, and the evolution of financial
wealth-to-mainland GDP ratio using the parameters in table 1. The solid lines represent the median value over M =10,000 simulated paths,
each of them of T = 60 sample points. The shaded areas represent the 15 and 85 percentiles from the sampling distribution of the simulated
series.

years, the spending path stabilizes at around 2.2% of the finan-
cial wealth for the remaining time horizon, until it reaches its
long-run value of 2.3% after 60 years. Our results, although
somewhat lower, are consistent with the constant transfer
rule described in the investment mandate of the Norwegian
GPFG.

Finally, Panel (d) shows the path of the financial wealth-
to-mainland GDP ratio over time. In the simulations, we use
an initial value of W0/GDP0 = 3.32, a value that is consis-
tent with the real GDP of mainland Norway for the year 2019.
Assuming a constant growth rate for the real GDP of mainland
Norway of 1.07% per year (the average growth rate observed
over the period 2000-2019), our results suggest that follow-
ing the optimal consumption-investment policies allows the
fund to reach, over the course of 60 years, a level of financial

wealth-to-GDP ratio that doubles its initial endowment. This,
in turn, implies that the fund’s financial wealth will grow at an
average annual rate of 2.55% from 9.4 in year zero to 42.36
in year 60. The terminal wealth in period 60 also reflects the
optimal transfer of wealth to future generations.

Our results can also be used to argue against the popular
advice of using the complete market solution to approxi-
mate the optimal consumption and investment strategies of an
unconstrained investor with stochastic income when markets
are in fact incomplete (see for example Bick et al. 2009, Munk
and Sørensen 2010, van den Bremer et al. 2016). Suppose
that the oil income risk is perfectly spanned by the risky asset
and use Lemma 3.1 to compute the value of the underground
oil wealth at each point in time. Then, using Proposition 3.2,
and the observed correlation coefficient between oil and stock
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price changes, we can approximate the investment and con-
sumption policies†. In general, we find that the use of the
complete market solution would command the SWF to invest
535% of its financial wealth at the beginning of the planning
horizon, a number that far exceeds the true portfolio share of
60% that prevails under incomplete markets. The associated
intertemporal hedging demand component amounts to nearly
140%, when the true excess demand is 12%. Under this sce-
nario, the SWF needs to borrow an unreasonable large amount
of funds in order to achieve the optimal portfolio. The rea-
son behind this large demand for the risky asset is that, given
the covariance structure between oil and stock price changes,
the SWF will overestimate the value of its underground oil
wealth when erroneously assuming that markets are complete.
This will, in turn, imply that the investor will rely on a wrong
measure of its true leverage possibilities, over invest in the
risky asset, and expose the fund to unnecessary large amounts
of risk. Therefore, our results suggest not to approximate the
optimal investment strategy for oil-based SWFs using the
assumption of complete markets, since the resulting portfo-
lio weights on the risky asset will be unreasonable high in
the absence of liquidity or borrowing constraints. However,
as shown in Munk and Sørensen (2010), the accuracy of the
approximation remains valid in this case if the volatility of
equity returns exceeds that of income‡.

4.3. Parameter sensitivity

In this subsection, we examine the sensitivity of the optimal
investment strategy to changes in the correlation between the
stock price and the oil price, and the SWF’s coefficient of
RRA.§

4.3.1. Correlation between asset returns and oil price
changes. Motivated by the time-varying estimates reported
in figure 3, we ask what the consequences of different val-
ues of the correlation between the shocks to the oil price and
the stock price changes for the optimal portfolio allocation
are. The results are illustrated in figure 5 where we consider

† The corresponding median trajectories from 10,000 simulations of
the model together with their 15th and 85th percentiles are reported
in Appendix 3.
‡ Using quarterly data on U.S. aggregate income from the National
Income and Product Accounts (NIPA) for the period 1951–2003,
Munk and Sørensen (2010) estimate a volatility of disposable labor
income of 2.08%, and a correlation coefficient between income and
equity price changes of 16.73%. Their estimate of the volatility of
the S&P500 index is 16.13%. When using aggregate income data
from the Panel Study of Income Dynamics (PSID) survey, their esti-
mate of the labor income volatility is 1.64%. On the other hand, and
consistent with the evidence reported in Carroll and Samwick (1997)
and Chamberlain and Hirano (1999) using PSID data, Viceira (2001)
uses a volatility of labor income of 10% in his benchmark calibration.
A similar value is estimated in Cocco et al. (2005), who additionally
estimate a correlation coefficient with equity returns between 0% and
− 1.75%.
§ We also perform a sensitivity check to explore the role of different
initial values of ratio W0/Y0 on the optimal allocation. We find that
initial values have moderate effects on the optimal equity holding,
whereas the impact on the consumption-wealth ratio is more sizable.
However, the effects are not quantitatively important. The results are
available upon request.

different values of ρPS , all of them consistent with the three
different episodes observed between 1974 and 2018. These
include periods of high negative and positive correlation, as
well as periods of zero correlation.

Panel (a) plots the median share of financial wealth invested
in equity across 10,000 simulated paths. It shows that the
optimal investment strategy is sensitive to changes in the cor-
relation coefficient. In particular, the portfolio weight on the
risky asset is a nonlinear and decreasing function of ρPS . As
discussed previously, a negative correlation between the price
of oil and the price of equity commands an initial position in
stocks that exceeds its long-run value. Using (22) under com-
plete markets as an approximation, we observe that the larger
is the negative association between stock and oil prices, the
larger are the gains from hedging, and thus the higher is the
optimal demand for equity. In particular, while a correlation of
nearly − 7% implies an initial allocation of 60%, a correlation
of − 30% increases this position to over 80%. As shown in
Panel (b), the hedging demand in these two examples account,
respectively, for 12% and 65% of the initial financial wealth
allocated to stocks.

If the price of oil and the price of equity are uncorrelated,
then the optimal portfolio share is below 60%. This allocation
is completely determined by the speculative demand com-
ponent since there is no room for hedging. The decreasing
path in this scenario is exclusively explained by a falling oil
wealth-to-financial wealth ratio.

Finally, a positive correlation of 30% results in a portfo-
lio that invests a large fraction of wealth into the risk-free
asset. In particular, the initial fraction of wealth invested in
equity is reduced to 30%, a value that represents half of the
share under our benchmark calibration. This low but posi-
tive fraction invested in the risky asset is the result of a long
position that is simultaneously counterbalanced by a short
position that aims to minimize the oil income risk via the
hedging component. Moreover, the optimal investment rule
should increase monotonically over time to reach its long-
run value of 40% at terminal time T̂ . Hence, if the correlation
stays positive, as suggested by the recent empirical evidence,
the current stock/bond mix in the portfolio of the Norwegian
GPFG implies an unnecessary large exposure to risk.

4.3.2. Risk aversion. As discussed previously, the coeffi-
cient of RRA, γ , plays an important role in shaping the
intertemporal demand for the risky asset. Consequently, panel
(a) in figure 6 illustrates the median value of the optimal
demand for equity for different values of this parameter
across 10,000 simulated paths. In general, larger risk aver-
sion leads the investor to take less risk. While our benchmark
calibration with γ = 3 commands the fund to invest nearly
60% of its financial wealth into the risky asset at the begin-
ning of the planning horizon, this fraction drops to 30% and
21% for coefficients of RRA equal to γ = 6 and γ = 9,
respectively. Moreover, the uncertainty around the optimal
investment strategy, as indicated by the shaded areas, also
becomes smaller the lower is the coefficient of RRA. Simi-
lar conclusions are reported by Campbell and Viceira (1999)
in a dynamic asset allocation model of an infinitely lived
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Figure 5. Sensitivity of the optimal investment share to the correlation coefficient, ρPS . Panel (a) plots the median value of the fraction of
financial wealth invested into equity. The median is computed from M =10,000 simulated paths of the model for different values of the
instantaneous correlation between real asset returns and changes in the real price of oil, ρPS . Panel (b) plots the associated median hedging
demand.
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Figure 6. Sensitivity of optimal allocations to the risk aversion coefficient. Panels (a)–(c) plot, respectively, the median value of the invest-
ment share on equity, of the hedging demand, and of the consumption-to-financial wealth ratio over M =10,000 simulated paths of the model
for different values in γ .

investor without stochastic income but with a time-varying
equity premium.

As t → T̂ , the allocation on the risky asset converges to
an investment share that remains constant through time. As
shown in (14), this stationary level decreases with the value
of the coefficient of RRA. In particular, the long-run opti-
mal allocation on the risky asset is nearly 20% for γ = 6, and
around 13% for γ = 9. These values represent a sizable cor-
rection relative to the 40% share implied by our benchmark
scenario.

Panel (b) plots the median value of the hedging demand
component associated with the total demand in Panel (a). In
general, we find that the larger is the investor’s risk aversion,
the more conservative she is to hedge against the oil income
risk, thus the less is the hedging component. This is in line
with the intuition obtained in the complete market case. As

shown in equation (22), when the oil income and stock price
are negatively correlated, then the larger is the coefficient of
RRA, the smaller is the hedging component.

Finally, in Panel (c), we report the effects of different val-
ues of the coefficient of RRA on the dynamics of the median
optimal consumption-to-financial wealth ratio. In general, we
find that the impact of different levels of risk aversion on the
consumption ratio is less pronounced than for equity holdings.
In other words, changes in the investor’s risk aversion have a
larger effect on the manager’s asset allocation than on the con-
sumption choice over time. For γ ∈ (3.0, 6.0, 9.0), the optimal
ratio is very smooth over time, and it fluctuates between 2.0%
and 3.0%. Given the value of the EIS in our benchmark cali-
bration (ψ = 2.0), we find that the optimal consumption ratio
declines with γ . As an example, consider year T̂ = 60. The
median optimal consumption is 2.3% of the financial wealth
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for an investor with γ = 3.0, whereas it increases to 2.6%
for an investor with γ = 9.0. As shown in Campbell and
Viceira (1999) this is not necessarily always the case as one
should expect to see an opposite relation between the optimal
consumption ratio and the coefficient of RRA for investors
that are extremely reluctant to substitute consumption across
periods and hence have low values of the EIS.

4.4. The effect of alternative assumptions on T̂

The results described so far assume that the flow of income
ends with certainty after 60 years. Here, we investigate how
the optimal consumption and investment strategies change
with different assumptions on the terminal income date T̂ .
First, we study how sensitive the optimal allocations are to
alternative, but still fixed, values of T̂ . Second, we assume
that the terminal date is unknown to the fund’s manager and
study its implication for optimal equity holding. The results
under the assumption of incomplete markets are summarized
in figure 7 where we plot the optimal share of financial wealth
invested in the risky asset and the optimal consumption-
wealth ratio, both at the beginning of the planning horizon,
for different terminal dates. The solid lines report the optimal
strategies for distinct terminal dates T̂ , each known with cer-
tainty by the manager, while the dashed lines represent the
optimal policies for different expected terminal dates. All the
remaining parameters are fixed to those in table 1.

4.4.1. Predetermined terminal date. Under the maintained
assumption that the fund’s manager knows with certainty
the date in which it will stop receiving income, we assess
the effects of different terminal dates on the optimal strate-
gies. In particular, we solve the second stage for T̂ ∈
[10, 30, 60, 100, 200, 300] years.

Panel (a) in figure 7 shows a positive relationship between
the initial optimal investment share and the terminal date.
Interestingly, we find that as we increase T̂ , the fraction of
financial wealth invested in equity increases monotonically to
a value of 60%. On the other hand, panel (b) shows that the
initial consumption rate decreases monotonically to a level
of 2.5% of the initial financial wealth. The positive relation
between α0 and T̂ is partly explained by the larger oil wealth
that results from accumulating oil income over a longer time
horizon. This effect is reinforced by the negative correlation
between oil price and stock price changes, ρPS . On the other
hand, the negative relation between C0/W0 and T̂ is the result
of two opposing effects: a positive income effect from the
larger accumulation of oil wealth mentioned before, and a
negative effect from a marginal propensity to consume out of
financial wealth that is decreasing in the terminal date. Under
our calibration, the latter effect dominates. Finally, notice that
as we increase T̂ , the relative importance of the terminal utility
J(WT̂ ) decreases due to the rate of discount.

4.4.2. Random terminal date. The assumption of a certain
terminal date might seem unrealistic. Therefore, we now con-
sider the case where T̂ ∈ [0, ∞) is instead a random variable
that denotes the time at which the fund will stop receiving oil

revenues. Let λ denote the conditional arrival rate of an event
that forces the fund’s owner to interrupt the flow of income to
the portfolio manager at time t > T̂ . Hence the expected ter-
minal date is given by E[T̂] = 1/λ. Appendix 4 shows that,
under the assumption that the variation in the terminal date
is uncorrelated with the shocks to oil income and financial
returns, the manager’s allocation problem can be written as

J0 = max
{C,α}∈A

E0

[∫ ∞

0
e−λt

(
f (Ct, Jt)+ λA

W 1−γ
t

1 − γ

)
dt

]
(29)

where A := βθG
− θ
ψ∞ , with G∞ given in (13). Note that as λ →

0, the fund is more likely to receive commodity income for a
longer time horizon on average. The HJB equation for this
problem is given by

0 = −λJ + u(Ct, Wt, Jt)+ JW (rW + α (μ− r)W + Y − C)

+ 1

2
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2
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PY 2JYY

+ σSσPρPS (αW) YJWY , (30)

with u(Ct, Wt, Jt) := f (Ct, Jt)+ λA W 1−γ
t

1−γ . We approximate the
solution to (30) using an infinite horizon version of the finite
difference scheme described earlier.

Panel (a) in figure 7 plots the initial investment share
for different expected terminal dates E[T̂] ∈ [10, 30, 60, 100,
200, 300] years. As for the case of a known terminal date, the
investment share becomes larger the higher is the expected
terminal date. In fact, α0 converges monotonically to a value
of around 50% when the expected terminal date is 300 years.
More interestingly, the figure shows the impact of uncertainty
on the investment share at the beginning of the planning hori-
zon. For example, consider the case where E[T̂] = 60 years.
The optimal initial investment strategy is around 48%, below
the optimal strategy that would prevail if the fund’s manager
knew with certainty that the terminal date was T̂ = 60 years.
The lower share is due to the effects of uncertainty on the ter-
minal date which, by assumption, cannot be hedged by the
fund. Panel (b) plots the effects of different expected terminal
dates on the initial consumption-wealth ratio. Contrary to the
case of the certain terminal date, we obtain a monotonically
increasing initial consumption per unit of financial wealth that
is the result of two complementary factors. First, an increase
in the precautionary savings behavior that reduces the initial
optimal consumption as a response to the undiversifiable risk
associated with an unknown terminal date of the income flow
that is potentially close to the beginning of the planning hori-
zon. Second, a discounting effect that weakens as the expected
terminal date increases meaning that consumption decisions
associated with lower expected terminal dates will be also
more affected by the uncertainty around the terminal date.

5. Welfare costs of suboptimal investment rules

So far, we have shown how the portfolio manager of an SWF
should optimally allocate its wealth among securities, and
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Figure 7. Optimal initial strategies for different assumptions on T̂ . Panels (a) and (b) plot, respectively, the optimal initial share of financial
wealth invested in equity and the optimal initial consumption-wealth ratio for different predetermined and certain values of the terminal date
T̂ (solid lines), and different expected terminal dates (dashed lines) determined by the hazard rate λ.

how to use the equity markets to hedge against fluctuations
in the commodity income. In particular, the optimal invest-
ment policy implies a portfolio mix that is time-dependent.
Its evolution over time is determined by the path followed
by the oil wealth-to-financial wealth ratio, the coefficient of
RRA, and the correlation between the commodity income and
the asset returns. However, the investment strategy followed
by most commodity-based SWFs is exogenously given by the
fund’s owner. More specifically, the fund’s exposure to risk
is determined by a long-term investment mandate that usually
recommends to hold a relatively constant position in equity
without necessarily timing the market, as opposed to the strat-
egy that would otherwise maximize welfare. To shed light
about the potential costs of following policies that are sub-
optimal, this section calculates the welfare cost of following
alternative policy rules. To this end, we ask what the amount
of additional initial financial wealth that needs to be trans-
ferred to the fund at the beginning of the planning horizon is
so that the implementation of a suboptimal policy provides the
same level of utility that could be achieved otherwise with the
optimal rule (see Cochrane 1989). In other words, we compute
the wealth compensating variation τ0 that yields

J(t0, W0, Y0) = J̃(t0, (1 + τ0)W0, Y0), (31)

where J is the indirect utility that solves (8), and J̃ is the value
function that results from following an investment strategy
different from that implied by (18), but where consumption
is allowed to adjust optimally. Note that τ0 can alternatively
be interpreted as a wealth-equivalent loss for the owner of the
SWF since in the absence of compensation the fund’s (indi-
rect) utility from following a suboptimal policy will be lower.
If the wealth compensation τ0 is small, the welfare gains of
implementing the maximizing investment rule can be prob-
ably outweighed by some of the features our model extracts

from, e.g. transaction costs related to portfolio rebalancing,
stochastic investment opportunities, etc. Thus, our stylized
framework provides a lower bound on the welfare costs of
following suboptimal investment policies.

In what follows, we consider two different suboptimal
investment strategies using the benchmark model where the
terminal date is known a priori by the fund’s manager. The
first policy fixes the fraction of wealth invested in the risky
asset to α̃t = 70% for all t ≤ T̂ . This fixed rule echoes the
investment mandate given by the Norwegian GPFG to the
NBIM according to which the allocation on equity should
amount to 60–80% of the total portfolio. The second rule
assumes instead that every period the fund invests a frac-
tion of its financial wealth into equity that is equal to the
median investment share recommended by the optimal asset
allocation model across M =10,000 simulations, i.e. α̃t =
Median(α1

t , . . . ,αM
t ). In this case, the investment rule is no

longer constant but time-varying. We regard this rule as a
near-optimal policy in the sense that it corresponds to a per-
turbed version of the optimal strategy and therefore can be
used to study the welfare costs of small misspecifications in
the dynamic asset allocation model or the use of inaccurate
parameter values.

Table 2 summarizes our findings, where we report the
wealth-equivalent compensation required at the beginning of
the planning horizon for different values of coefficient of
RRA, γ , and different values of the correlation coefficient
between stock and oil price changes, ρPS . All the values are
measured as a percentage of the fund’s initial endowment of
financial wealth.

Panel (a) shows the results when the SWF follows the con-
stant investment rule of 70%, regardless of the value of the
coefficient of RRA and of the correlation coefficient. This
strategy implies that the SWF does not time the market, and
instead assumes that holding a constant position in equity
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Table 2. Wealth-equivalent compensation under suboptimal portfolio rules.

(a) Constant rule (b) Median rule

ρPS ρPS

γ −0.3 −0.07 0 0.3 −0.3 −0.07 0 0.3

2 23.82 6.42 4.14 1.41 23.38 5.82 3.51 0.04
3 17.85 12.49 12.33 16.29 9.77 2.01 1.02 0.44
4 26.17 26.64 27.76 36.33 5.72 1.00 0.43 0.64
5 38.22 43.32 45.58 58.47 3.94 0.60 0.22 0.72
6 51.83 61.32 64.71 81.98 2.98 0.41 0.13 0.74

Panel (a) reports the wealth compensation required (% of initial financial wealth) when following a suboptimal portfolio rule that is constant
and equal to 70% over time, while consumption adjusts optimally. Panel (b) reports the wealth compensation required (% of initial financial
wealth) when following an ad-hoc suboptimal portfolio rule that in each period fixes the investment share equal to the median value of the
optimal portfolio rule, while consumption adjusts optimally.

will imply a reduced level of risk for the overall portfolio
over the long run (see Siegel 2014). However, our results
suggest that such a strategy can lead to large wealth losses.
As an example, for our benchmark calibration with γ = 3
and ρPS = −0.07, the wealth-equivalent loss is equivalent to
12.5% of the initial financial wealth. In other words, for the
suboptimal policy to deliver the same level of welfare that can
be obtained using the optimal investment policy, the fund will
require an injection of capital equivalent to 12.5% of the ini-
tial endowment. To understand why the magnitude of the loss,
recall that under the optimal strategy, the fund should initially
invest 60% of its financial wealth and thereafter decrease
this fraction over time to reach a long-run value of around
40%. On the contrary, when following the suboptimal policy,
the fund invests instead 70% period-by-period, a value that
exceeds the optimal allocation at every point in time. Hence,
the wealth-equivalent loss in the benchmark scenario reflects
the excessive exposure to risk implied by the suboptimal pol-
icy, an exposition that becomes larger the closer the fund is to
stop receiving revenues from commodity-related activities.

Our results also suggest that the welfare losses tend to be
substantial for moderate to highly risk-averse investors, par-
ticularly when the absolute value of the correlation between
oil and stock price changes is large. For example, for a corre-
lation of 30% which resembles that observed in during the last
decade, the losses that result from implementing a constant
investment rule of 70% in equity over time fluctuate between
16% and 82% of the initial endowment of the fund. Although
smaller in magnitude, large losses are also incurred for large
and negative correlation coefficients.

In Panel (b), we report the wealth-equivalent losses
incurred by the fund when following a suboptimal, but time-
dependent, investment rule corresponding to the median of
the optimal share obtained from repeated simulations of the
model. In contrast to the previous rule, this alternative fixed
rule is now a function of the investor’s coefficient of RRA
and the correlation coefficient between oil and stock price
changes. Our results indicate that using a time-dependent
rule, whose path is allowed to adjust to the investor prefer-
ences and the market interdependencies, leads to considerably
smaller losses. For our benchmark calibration, the loss from
not implementing the optimal strategy is equivalent to 2% of
the fund’s initial endowment. Interestingly, if ρPS ≤ 0 the loss
becomes smaller the more risk averse is the investor, a pattern

that is in contrast to that documented in Panel (a). This inverse
relation is partly explained by the reduced variability in the
optimal investment share (see figure 6) that accompanies the
lower median equity holdings of highly risk-averse agents.
However, in the case of a positive correlation, we find that the
losses, although small, increase with the coefficient of RRA.
For ρPS = 30% the losses never exceed 1%, which makes the
use of a time-dependent fixed rule an attractive alternative in
case that the optimal rule is not readily available to the fund. A
similar conclusion can be drawn for small negative correlation
coefficients and relatively high coefficients of RRA.

6. Conclusions

In this paper, we have extended the standard dynamic asset
allocation problem for long-term investors with stochas-
tic income to accommodate the portfolio problem faced by
commodity-based SWFs. In particular, we study the optimal
consumption-investment decision of a SWF whose primary
source of income comes from oil-related activities. Fluctu-
ations in the income stream are assumed to be primarily
driven by variations in the exogenous and volatile price of oil.
The model features Epstein-Zin-Weil recursive preferences
that conveniently separate risk aversion from the elasticity
of intertemporal substitution. Since most SWFs are set up by
countries interested in sustaining a standard of living for all
future generations, we assume that the fund’s planning hori-
zon is infinite. However, the oil revenues are received only for
a fixed number of periods.

Using data on the S&P500 index and the WTI price for
crude oil for the period 1973–2019, we find statistical evi-
dence of a time-varying, but imperfect, correlation between
the risky asset and the commodity price. This suggests that the
income risk faced by the SWF cannot be perfectly replicated
by a trading strategy in the financial markets. More specifi-
cally, we find that the average correlation for the period prior
to 2007 was − 7%. Interestingly, the direction and magnitude
of this correlation changed considerably with the start of the
Great Recession, and by the end of 2018, it had reached a
positive value of 30%. We solve the SWF’s manager allo-
cation problem under the assumption of incomplete markets.
The remaining parameters are chosen to replicate some salient
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features of the Government Pension Fund Global (GPFG) in
Norway. We find that the fund should initially allocate around
60% of its financial wealth into risky assets and thereafter
decrease its position gradually until it reaches a long-run share
of 40% over a period of 60 years. The implied intertemporal
hedging demand component is found to be large at the begin-
ning of the planning horizon accounting for 20% of the total
demand for risky assets.

In contrast with our findings, the fraction of financial wealth
invested by the GFPG in equity has exhibited an upward trend
since its inception: 40% in 1998 to 70% in 2019. Given the
imperfect, but negative, correlation between stock prices and
oil income, our results suggest that the GPFG has followed
a suboptimal investment strategy that has not exploited all
the available hedging opportunities, and thus has taken larger
and unnecessary amounts of risk. If instead we consider a
positive correlation, similar to that observed after the Great
Recession, we find an initial allocation of financial wealth into
the risky asset of around 30% that should gradually increase
towards its long-run share of 40%. Although in this case, the
model implies an increasing investment profile, the optimal
portfolio share in equity is substantially lower than any of
the allocations reported by the Norwegian SWF during the
last 20 years, and thus, also suggests a suboptimal use of
the hedging possibilities. In a world where the positive cor-
relation is becoming stronger, SWFs should therefore reduce
their exposure to risk by moving away from stocks in the near
future.

We also studied the welfare costs of not following an
investment strategy that optimally exploits the intertempo-
ral hedging opportunities available to the SWF. To do so, we
use a measure of wealth-equivalent welfare compensation. We
find significant welfare costs for a SWF that follows a con-
stant investment policy with a fixed equity/bond mix equal
to 70/30%. We also find that these losses are considerably
reduced if instead the SWF implements a time-dependent, but
ad-hoc, investment policy that although suboptimal resem-
bles the decreasing path of the oil wealth-to-financial wealth
ratio. For practical purposes, this alternative policy may be
considered as a second-best policy in an environment with
institutional constraints that prevent the SWF’s manager to
hedge oil price fluctuations periodically.

Our study offers a unified framework that can be used
by commodity-based SWFs to design optimal investment
policies that are consistent with the long-term objective of
ensuring a smooth intergenerational consumption, and the
short-run objective of shielding the economy from fluctua-
tions in the volatile oil revenues. Given the importance of
the covariance structure between oil prices and asset returns,
future work should further investigate the time-varying nature
of the correlation between tradable and non-tradable assets,
and the inclusion of more asset classes with time-varying risk
premiums.
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Appendices

Appendix 1. Optimal allocation: first stage solution

Proof of Proposition 3.1 Following Campbell and Viceira (2002),
the optimal allocation problem faced by the fund’s manager for t > T̂
when Yt = 0 is given by

J
(
WT̂

) = max
(C,α)∈A

ET̂

[∫ ∞

T̂
f (Ct, J (Wt)) dt

]

subject to (7), and where the aggregator f (C, J) is given by (6).
A necessary condition for optimality for any t > T̂ is given by the
Hamilton–Jacobi–Bellman (HJB) equation

0 = max
{C,α}∈A

{
f (C, J (W))+ 1

dt
Et [ dJ (W)]

}
.

An application of Itô’s lemma implies

dJ (W) = JW dW + 1

2
JWW (σSαW)2 dt,

https://www.bcg.com/publications/2019
https://github.com/matthieugomez/EconPDEs.jl
https://www.nbim.no
https://www.nbim.no/en/publications/reports/2021/gips-report/
https://www.statista.com/topics/5064/hedge-funds/
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where JW := ∂J(W)/∂W and JWW := ∂2J(W)/∂W2. Using the
martingale difference properties of stochastic integrals, we arrive at

0 = max
{C,α}∈A

{
f (C, J)+ JW [rW + (μ− r) αW − C]

+ 1

2
σ 2

S JWW (αW)2
}

. (A1)

The first-order conditions for an interior solution read

C� =
(
β

JW

)ψ
[(1 − γ ) J]

1−ψγ
1−γ (A2)

α� = 1

− WtJWW
JW

μ− r

σ 2
S

. (A3)

By substituting (A2) and (A3) in (A1) we arrive to the maximized
HJB equation

0 = f
(
C�, J

)+ JW
[
rW + (μ− r) α�W − C�

]
+ 1

2
σ 2

S JWW
(
α�W

)2 , (A4)

which corresponds to a nonlinear partial difference equation in J(W).
We conjecture that a solution to (A4) is given by

J (W) = βθ

1 − γ
G

− θ
ψ∞ W1−γ , (A5)

where G∞ is an unknown constant to be determined. Our conjecture
implies that

JW = βθG
− θ
ψ∞ W−γ , and JWW = −γβθG− θ

ψ∞ W−γ−1. (A6)

Substituting (A5) and (A6) into (A4) yields

0 = βψ

ψ − 1
βθG

− θ
ψ∞ W1−γ

{
β−1G∞ − 1

}
+ βθG

− θ
ψ∞ W1−γ

[
r + α� (μ− r)− C�

W

]
− 1

2
γβθG

− θ
ψ∞ W1−γ (α�)2 ,

where

C�

W
= G∞, (A7)

α� = 1

γ

μ− r

σ 2
S

. (A8)

Dividing both sides by βθG
− θ
ψ∞ W1−γ and solving for G∞ yields (13)

which confirms our conjecture. Equations (A7) and (A8) show
that both the consumption-to-financial wealth ratio and the share
of financial wealth invested in the risky asset are constant for all
t > T̂ . �

Appendix 2. Optimal allocation: second stage solution

The optimal allocation problem faced by the fund’s manager for all
t ≤ T̂ is given by

J (0, W0, Y0) = max
(C,α)∈At

E0

⎡⎣∫ T̂

0
f (Ct, J (t, Wt, Yt)) dt + A

W1−γ
T̂

1 − γ

⎤⎦
(A9)

subject to (4) and (7), and where A := βθG
− θ
ψ∞ . The terminal con-

dition fixes the value of the indirect utility function at time T̂ to

that in (A5), i.e. J(T̂ , W , 0) = J(W). A necessary condition for opti-
mality for any t ∈ [0, T̂] is given by the Hamilton–Jacobi–Bellman
(HJB) equation

0 = max
{C,α}∈A

{
f (C, J (W))+ 1

dt
Et [ dJ (W)]

}
.

An application of Itô’s lemma implies

dJ (t, W , Y )

=
[

Jt + [rW + α (μ− r)W + Y − C] JW

+ 1

2
σ 2

S (αW)2 JWW + κYJY

+ 1

2
σ 2

PY 2JYY + σSσPρPS (αW)YJWY

]
dt

+ (σSαtWtJW + σPYtρPSJY ) dZS,t + σPYt

√
1 − ρ2

PSJY dZP,t,

where Jt := ∂J(t, W , Y )/∂t, JW := ∂J(t, W , Y )/∂W , JY := ∂J(t, W ,
Y )/∂Y , JWW := ∂2J(t, W , Y )/∂W2, JYY := ∂2J(t, W , Y )/∂Y 2, and
JWY := ∂2J(t, W , Y )/∂W∂Y . Using the martingale difference prop-
erties of stochastic integrals, we arrive at

0 = max
{C,α}∈At

{
f (C, J)+ Jt + [rW + α (μ− r)W + Y − C] JW

+ 1

2
σ 2

S (αW)2 JWW + κYJY

+ 1

2
σ 2

PY 2JYY + σSσPρPS (αW)YJWY

}
.

Under the assumptions of incomplete markets, the allocation prob-
lem for t ≤ T̂ , does not admit a closed-form solution. Section A.1
shows how to numerically approximate J(W , Y , t) for all t < T̂ such
that the maximized HJB equation in (16)

0 = βθJ

⎧⎨⎩
[

C

[(1 − γ ) J]
1

1−γ

]1− 1
ψ

− 1

⎫⎬⎭
+ Jt + [rW + α (μ− r)W + Y − C] JW + 1

2
σ 2

S (αW)2 JWW

+ κYJY + 1

2
σ 2

PY 2JYY + σSσPρPS (αW)YJWY , (A10)

holds, where C and α are given by the first-order conditions in (17)
and (18). The solution must satisfy the terminal condition J(T̂ , W , 0).
On the contrary, if financial markets are complete an analytical
solution to the allocation problem is derived in Section A.2.

A.2.1. Incomplete markets solution

A.2.1.1. The transformed problem. The problem in (A10)
consists of solving a nonlinear partial differential equation (PDE) in
three state variables: time, financial wealth and income. To simplify
the implementation of the numerical approximation, we exploit the
homogeneity of the value function with respect to financial wealth
and income to reduce the number of state variables from three to
two.

As discussed in Wang et al. (2016), the value function J(t, W , Y )
is homogeneous of degree (1 − γ ) in W and Y. Hence, for any given
function k(t) it holds that

J (t, k (t)W , k (t) Y ) = k (t)1−γ J (t, W , Y ) .

In line with Munk and Sørensen (2010), we set k(t) = e−δt/Y ,
implying that

J (t, W , Y ) = Y 1−γ e−δ(γ−1)tJ
(

t, x, e−δt
)

= Y 1−γ F (t, x)1−γ

1 − γ
,

(A11)
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where we have defined x := e−δtW/Y to be the scaled-adjusted
financial wealth-to-income ratio, with ∂x/∂Y = −x/Y , ∂x/∂t = −δx
and ∂x/∂W = e−δt/Y . The parameter δ ≥ 0 prevents the financial
wealth-to-income ratio from taking very large values as t → T̂ which
could prevent the numerical algorithm to converge on a fixed grid
for x. The value for δ is found by trial-and-error conditional on the
calibration of the structural parameters.

The introduction of new state variable x allows us to simplify the
original problem. In fact, substituting (A11) into (A10) yields

0 = βψ

ψ − 1
(FY )1−γ

{(
C

YF

)1− 1
ψ − 1

}
+ F−γ Y 1−γ (Ft − δFxx)︸ ︷︷ ︸

≡Jt

+
[

r
W

Y
+ α (μ− r)

W

Y
+ 1 − C

Y

]
Y e−δtF−γ Y−γFx︸ ︷︷ ︸

≡JW

+ 1

2
σ 2

S α
2 W2

Y 2 Y 2 e−2δtF−γ−1Y−γ−1
[
FFxx − γF2

x

]
︸ ︷︷ ︸

≡JWW

+ κY (FY )−γ (F − xFx)︸ ︷︷ ︸
≡JY

+ 1

2
Y 2σ 2

Y (FY )−1−γ
(

x2FFxx − γ (F − xFx)
2
)

︸ ︷︷ ︸
≡JYY

+ σSσYρYSα
W

Y
Y 2

× e−δt (FY )−γ−1 [−xFFxx − (γFx) (F − xFx)]︸ ︷︷ ︸
≡JWY

.

After some algebra, the transformed PDE reads

0 = βψ

ψ − 1
ĉ1− 1

ψ F
1
ψ +

(
κ − βψ

ψ − 1
− γ σ 2

P

2

)
F + Ft

+
[(

r − δ − κ + σ 2
Pγ
)

x

+ (μ− r − γ σSσPρPS) αx + e−δt − e−δt ĉ
]

Fx

+ 1

2
x2
(
σ 2

S α
2 + σ 2

P − 2σSσPρPSα
) (

Fxx − γF−1F2
x

)
, (A12)

where the optimal consumption-to-income ratio, ĉ := C/Y , and the
optimal investment share, α, are given by

ĉ = eψδtβψF−ψ
x F, (A13)

α = FFx

x
[
γF2

x − FFxx
] (μ− r

σ 2
S

− γ σPρPS

σS

)
+ σPρPS

σS
. (A14)

The transformed problem is now that of finding the two state vari-
able function F(t, x) for all t < T̂ that solves the PDE in (A12). The
terminal condition for the transformed problem, F(T̂ , x), is related to
the original terminal condition through (A11). In particular, note that
at t = T̂ , the optimal value function can be written as

J
(

T̂ , W , Y
)

= βθ

1 − γ
G

− θ
ψ∞ W1−γ

= βθ

1 − γ
G

− θ
ψ∞
[

Y

(
e−δT̂ W

Y
eδT̂
)]1−γ

= βθ

1 − γ
G

− θ
ψ∞
(

eδT̂ Yx
)1−γ

,

where we have used the fact that x(T̂) = e−δT̂ W
Y . Then, by the

homogeneity property of the value function, it follows that

Y 1−γ F
(

T̂ , x
)1−γ

1 − γ
= βθ

1 − γ
G

− θ
ψ∞
(

eδT̂ Yx
)1−γ

,

which implies the following value for the terminal condition

F
(

T̂ , x
)

=
(
βθG

− θ
ψ∞
) 1

1−γ
eδT̂ x, (A15)

where G∞ is given in (13).

A.2.1.2. Finite difference approximation. We approximate
the solution to the PDE in (A12) for t ≤ T̂ using the finite differ-
ence algorithm for nonlinear PDEs introduced in Gomez (2019).
In particular, the finite difference method approximates F(t, x) on
a (N + 1)× (J + 1) rectangular grid of equally spaced points on the
(t, x)−space with values {(tn, xj) | n = 0, 1, . . . , N , j = 0, 1, . . . , J},
where xj = x0 + j�x and tn = nt for some fixed spacing param-
eters x and t.

Let Fj,n := F(tn, xj) denote the approximated value function at
grid point (tn, xj). For T̂ = tN = Nt, the approximated value func-
tion is set equal to

Fj,T̂ =
(
βθG

− θ
ψ∞
) 1

1−γ
eδT̂ xj, (A16)

for all j = 0, 1 . . . , J . Given (A16), the optimal investment share and
consumption-to-income ratio at time T̂ , ĉj,T̂ and αj,T̂ , are computed
from (14) and (15), respectively.

Now, for each j = 0, 1 . . . , J and t = 0, 1, . . . , N − 1 in the inte-
rior of the grid, we compute the time derivative of the value function
using the forward difference approximation

F+
t ≈ D+

t Fj,n = Fj,n+1 − Fj,n

t
,

whereas the first-order derivative with respect to the scale-adjusted
wealth-to-income ratio is computed with either a forward or a
backward difference operator

F+
x ≈ D+

x Fj,n = Fj+1,n − Fj,n

�x
,

F−
x ≈ D−

x Fj,n = Fj,n − Fj−1,n

�x
.

Finally, the second-order derivatives are approximated using the
central difference operator

Fxx ≈ D2
xFj,n = Fj+1,n − 2Fj,n + Fj−1,n

(x)2
.

Following Candler (1999) and Achdou et al. (2022), the choice of
difference operator for Fx is based on an upwind differentiation
scheme according to which the correct approximation, DxFj,n, is
determined by the direction of state variable. In what follows, the
direction will be determined by the sign of

zj,n :=
(

r − δ − κ + σ 2
Pγ
)

xj,n + (μ− r − γ σSσPρPS) αj,nxj,n

+ e−δnt − e−δnt ĉj,n,

where

ĉj,n = eψδntβψ
(
DxFj,n

)−ψ
Fj,n,

αj,n = Fj,n
(
DxFj,n

)
x
[
γ
(
DxFj,n

)2 − Fj,n
(
D2

xFj,n
)]

×
(
μ− r

σ 2
S

− γ σPρPS

σS

)
+ σPρPS

σS
,

are the optimal consumption-to-income ratio and investment rate at
grid point (j, n). Thus, if the ‘drift’ variable zj,n is positive we use the
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forward operator and if it is negative, we use the backward operator.
This gives rise to the following upwind operator

DxFj,n = (
D+

x Fj,n
)
1{z+≥0} + (

D−
x Fj,n

)
1{z−<0},

where 1 denotes the indicator function, and z+ and z− the ‘drift’ vari-
ables computed with the forward and backward operators, respec-
tively. Then, the finite difference approximation to the HJB equation
at grid point (n, j) is given by

− Fj,n+1 − Fj,n

t

= βψ

ψ − 1

(
ĉj,n
)1− 1

ψ
(
Fj,n

) 1
ψ +

(
κ − βψ

ψ − 1
− γ σ 2

P

2

)
Fj,n

+ z+
j,n

(
D+

x Fj,n
)
1{z+≥0} + z−

j,n

(
D−

x Fj,n
)
1{z−<0}

+ 1

2
x2

j,n

(
σ 2

S α
2
j,n + σ 2

P − 2σSσPρPSαj,n

) [ (
D2

xFj,n

)
− γ

(
Fj,n

)−1 ((D+
x Fj,n

)
1{z+≥0} + (

D−
x Fj,n

)
1{z−<0}

)2 ]
.

(A17)

Given a value Fj,n+1 for all j, the approximation in (A17) can be com-
pactly written as a system of (J + 1) nonlinear equations: one for
each n = 0, 1, . . . , N − 1. An approximation to the value function at
time tn is therefore given by the vector �Fn = [F0,n, F1,n, . . . , FJ ,n]�
that solves �G(�Fn) = �0, where �Fn denotes the unknown value func-
tion at all the grid points in the x−lattice at time step n. To compute
the approximation �Fn for all n = 0, 1, . . . , N − 1, we iterate back-
wards on time starting from the terminal condition �FN in (A16). This
recursion can be written as

�0 = G
(�Fn

)+ 1

�t

(�Fn+1 − �Fn
)

. (A18)

A.2.2. Complete markets solution

Proof of Lemma 3.1 Under the assumption of complete markets it
follows that |ρPS | = 1. Hence, the dynamics of the fund’s manager
income under the physical probability measure P is given by the
Geometric Brownian motion

dYt

Yt
= κ dt + ξ dZS,t, (A19)

where ξ := σP × ρPS . Let the market price of risk be given by λ :=
(μ− r)/σS . Then, by Girsanov’s theorem, the fund’s income has
the following equivalent Geometric Brownian motion representation
under the risk-neutral probability measure Q

dYt

Yt
= (κ − ξλ) dt + ξ dZQ

S,t, (A20)

with solution

Yu = Yte

((
κ−ξλ− 1

2 ξ
2
)
(u−t)+ξ

(
ZQ

S,u−ZQ

S,t

))
, for u ≥ t. (A21)

Let Ot := O(Yt, t; T̂) denote the expected present discounted value

at time t of all future oil income, {Yu}T̂
u=t, i.e.

Ot = E
Q
t

[∫ T̂

t
e−r(u−t)Yu du

]
. (A22)

Multiplying both sides of (A21) by e−r(u−t) and integrating from t to
T̂ we arrive at

T̂∫
t

e(−r(u−t))Yu du = Yt

T̂∫
t

e

((−r+κ−ξλ− 1
2 ξ

2
)
(u−t)+ξ

(
ZQ

S,u−ZQ

S,t

))
du.

(A23)
Since ZQ

S,u − ZQ
S,t is normally distributed, the term inside the integral

on the right-hand side of (A23) is log-normally distributed. Hence,

the expected value conditional on the information at time t is

E
Q
t

[∫ T̂

t
e−r(u−t)Yu du

]
= Yt

∫ T̂

t
e−(r−κ+ξλ)(u−t) du. (A24)

It follows that

Ot = Yt1{t<T̂}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

r − κ + ξλ(
1 − e

−(r−κ+ξλ)
(

T̂−t
))

if r − κ + ξλ �= 0

(T − t) if r − κ + ξλ = 0.︸ ︷︷ ︸
≡M(t):Income multiplier

(A25)

Note that under the risk-neutral probability measure Q, the
Feynman–Kac Theorem suggests that O(Yt, t; T̂) satisfies the follow-
ing partial differential equation (PDE)

∂Ot

∂t
+ (κ − ξλ) Yt

∂Ot

∂Yt
+ 1

2
ξ2Y 2

t
∂2Ot

∂Y 2
t

− rOt + Yt = 0, (A26)

with terminal condition O(YT̂ , T̂ ; T̂) = 0. �

Proof of Proposition 3.2 Conjecture that the value function takes
the form

J (t, W , Y ) = βθ

1 − γ
G (t)

θ
ψ (W + O)1−γ (A27)

where W + O is the fund’s total wealth at a given point in time, and
G(t) is an unknown deterministic function to be determined. Our
conjecture uses the ideas in Bodie et al. (1992) according to which it
is possible to think of the fund’s manager as having an initial wealth
equal to W + O and no oil income, instead of having an initial level
of financial wealth and an flow of income. Our conjecture implies
that

Jt = βθ

(ψ − 1)
G (t)

θ
ψ

−1 ∂G (t)

∂t
(W + O)1−γ

+ βθG (t)
θ
ψ (W + O)−γ ∂O

∂t
,

JW = βθG (t)
θ
ψ (W + O)−γ ,

JWW = −γβθG (t) θψ (W + O)−γ−1 ,

JY = βθG (t)
θ
ψ (W + O)−γ OY ,

JYY = −γβθG (t) θψ (W + O)−γ−1 (OY )
2 ,

JWY = −γβθG (t) θψ (W + O)−γ−1 OY ,

where we have used the fact that, according to Lemma 3.1, OYY = 0.
Subscripts on the value function J denote partial derivatives with
respect to the respective state variables. Substituting in (17) and (18)
yields

Ct = G (t)−1 (Wt + Ot) , (A28)

αt = 1

γ

(
μ− r

σ 2
S

)(
1 + Ot

Wt

)
− Ot

Wt

σPρPS

σS
, (A29)

where we have used (A25) to conclude that Ot = YtOY .
Substituting into the maximized HJB Equation (A10) and

using (A26) together with the fact rW = r(W + O)− rO, we arrive
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to the linear ODE

∂G (t)

∂t
−
[
βψ + (1 − ψ) r + (1 − ψ)

1

2γ

(
μ− r

σS

)2
]

× G (t)+ 1 = 0. (A30)

Using the terminal condition for the HJB equation

J
(

T̂ , W , Y
)

= 1

1 − γ
βθG

− θ
ψ∞ W1−γ

T̂
,

together with our conjecture, we obtain the terminal condition that
the ODE in (A30) has to satisfy. In particular

βθ

1 − γ
G
(

T̂
) θ
ψ

W1−γ
T̂

= 1

1 − γ
βθG

− θ
ψ∞ W1−γ

T̂

⇓
G

(
T̂
)

= G−1
∞ ,

which implies that

G (t) = G−1
∞ ∀ t < T̂ , (A31)

and our conjecture has been verified. �

Appendix 3. Optimal trajectories under complete
markets

Figure A.1 illustrates the optimal path for selected variables for
all t ∈ [0, T̂], together with intervals around the median that rep-
resent the 15th and 85th percentiles of their distribution generated
from 10,000 simulations of the model. We assume that markets
are complete and therefore use Lemma 3.1 to compute the value
of the underground oil wealth at each point in time. The optimal
consumption-to-financial wealth ratio, and the optimal demand for
the risky asset follow from Proposition 3.2 when replacing ρPS by
the estimated correlation coefficient reported in table 1.

Appendix 4. A model with random T̂

A.4.1. The random terminal date

Let T̂ ∈ [0, ∞) denote the random time at which the fund’s manager
stops receiving commodity income, with probability density function
π(t). Hence, the probability of receiving income between 0 and t (the
survival probability) is

pt := P(T̂ > t | T̂ > 0) =
∫ ∞

t
π(s) ds = 1 −

∫ t

0
π(s) ds, (A32)

from which it follows that

dpt

pt
= − πt

1 − ∫ t
0 π(s) ds

dt, p0 = 1. (A33)

The hazard rate, i.e. the probability that the fund will stop receiving
income in the next instant of time, given that it has received a positive
flow of income up to time t, is

λt = πt

1 − ∫ t
0 π(s) ds

. (A34)

Hence, λt can be interpreted as the conditional arrival rate of an event
that will stop the flow of income to the fund at time t > T̂ . Notice that
the unique solution to (A33) is

pt := E0
[
1t<T̂

] = exp

(
−
∫ t

0
λs ds

)
, (A35)

where 1x is the indicator function. For λt = λ ∀t, the random time
T̂ represents the date of the first jump of a standard Poisson process,
and (A35) becomes

pt := E0
[
1t<T̂

] = exp (−λt) . (A36)

Let dt := 1 − pt = ∫ t
0 π(s) ds denote the complement of the survival

function. It follows that

ddt

dt
= πt = λt exp

(
−
∫ t

0
λs ds

)
. (A37)

A.4.2. The manager’s problem

The problem faced by the fund’s manager is given by

J0 = max
{Ct ,αt}T̂

t=0

ET̂
0

⎡⎣∫ T̂

0
f (Ct, Jt) dt + A

W1−γ
T̂

1 − γ

⎤⎦ , (A38)

subject to (7) and (4), where ET̂
0 [·] is the expected value conditional

on the information available at time t = 0, f (C, J) is given in (6), and

the constant A = βθG
− θ
ψ∞ , with G∞ given in (13). The value of A is

consistent with the assumption that the fund’s manager optimizes
even after the oil income is over, Yt = 0 ∀t > T̂ .

In the following, let us assume that the Brownian motions ZS,t

and ZP,t, and the random terminal date, T̂ , are mutually independent.
Then, (A38) can be written as

J0 = max
{Ct ,αt}T̂

t=0

ET̂
0

⎡⎣∫ T̂

0
f (Ct, Jt) dt + A

W1−γ
T̂

1 − γ

⎤⎦
= max

{Ct ,αt}T̂
t=0

ET̂
0

⎡⎣∫ ∞

0
1t<T̂ f (Ct, Jt) dt + 1t≥T̂ A

W1−γ
T̂

1 − γ

⎤⎦
= max

{Ct ,αt}T̂
t=0

∫ ∞

0
ET̂

0

[
1t<T̂

]
ET̂

0 [f (Ct, Jt)] dt

+ ET̂
0

⎡⎣1t≥T̂ A
W1−γ

T̂

1 − γ

⎤⎦
= max

{Ct ,αt}T̂
t=0

E0

[∫ ∞

0
ptf (Ct, Jt) dt +

∫ ∞

0
A

W1−γ
t

1 − γ
ddt

]

= max
{Ct ,αt}T̂

t=0

E0

[∫ ∞

0
e− ∫ t

0 λs dsf (Ct, Jt) dt

+
∫ ∞

0
λte

− ∫ t
0 λs dsA

W1−γ
t

1 − γ
dt

]
(A39)

by resolving the uncertainty with respect to the random time T̂ . For
λt = λ for all t> 0, the above simplifies to (29) in the main text.
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Figure A1. Optimal strategies under complete markets. Panels (a)–(d) plot, respectively, the optimal share of financial wealth invested in
equity, the hedging demand as a fraction of the financial wealth, the optimal consumption-to-financial wealth ratio, and the evolution of
financial wealth-to-mainland GDP ratio. The optimal consumption-to-financial wealth ratio and the optimal demand for equity are given
by (21) and (22) in Proposition 3.2, respectively. The solid lines represent the median value over M =10,000 simulated paths using the
parameters in table 1, each of them of T = 60 sample points. The shaded areas represent the 15 and 85 percentiles from the sampling
distribution of the simulated series.
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