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A B S T R A C T   

Global surface temperature has been setting new record highs in the recent decades, imposing increasing 
environmental challenges for societies and ecosystems worldwide. Global warming rates of the 20th century 
have been documented by a number of studies, nevertheless, the warming rates in the most recent decades in the 
21st century are of particular interest for understanding the ongoing climate change. Analyzing temperature 
trends demands data with high spatial resolution and broad geographical coverage to allow for analyzing trends 
and changes on a regional scale. Land Surface Temperature data from NASA MODIS with global resolution of 
0.05◦ and Skin Temperature data from European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5- 
Land reanalysis with global resolution of 0.1◦ fulfill these demands. In this study, we analyze the remote-sensing- 
based MODIS data to estimate land surface temperature change rates over the period 2001–2020 in global, 
continental, and pixel-wise scales with statistical significance indicated. The model-based ERA5-Land data are 
also analyzed in parallel, extending the period of analysis back to 1981. These two independently-sourced 
datasets, one from satellites above the atmosphere and one from combining surface modeling and observa
tions, are shown to produce highly consistent results. It is revealed that the trends in the shorter period 
2001–2020 are spatially conforming to the trends in the longer period 1981–2020 despite the shorter time 
length. For the period 2001–2020, we show that the global average land surface temperature rate of change was 
0.26 ◦C-0.34 ◦C per decade, with substantially different warming rates in different regions. The Arctic, Europe, 
and Russia show statistically significant warming in both datasets. The Arctic, in particular, warmed at a rate 
2.5–2.8 times the global average, and data in the 40-year period 1981–2020 suggest that warming is accelerating 
in almost all the continents or large regions. Most noticeably, the two independent datasets both indicate that 
Arctic permafrost regions had the world's highest warming rate at the onset of the 21st century, reaching >2 ◦C 
per decade in some areas.   

1. Introduction 

The global mean surface temperature (GMST) has increased by 
1.1 ◦C between the 2001–2021 and 1850–1900 periods, with a rate that 
has accelerated after the 1970s (IPCC, 2021). Specifically, earlier studies 
have shown that GMST rose by 0.37◦ and 0.32 ◦C in the periods 
1925–1944 (0.19◦ per decade) and 1978–1997 (0.16◦ per decade), 
respectively (Jones et al., 1999), and global warming occurred at a rate 
of 0.15 ◦C–0.20 ◦C per decade since the late 1970s (Allen et al., 2018; 
Hansen et al., 2010; Morice et al., 2020). Predictions from climate 
models, furthermore, forecast that in 2020–2050, the global mean sur
face temperature can warm up as much as 0.25 ◦C per decade (Samset 

et al., 2020; Tebaldi et al., 2021), and that the Arctic is transitioning 
away from a cryosphere-dominated system (Landrum and Holland, 
2020). 

However, not all regions are warming equally. The Arctic has been 
found to have warmed twice as fast as the global average in recent de
cades (Cohen et al., 2014; Gulev et al., 2021), and the IPCC AR6 recently 
concluded that most land areas in the extratropical northern hemisphere 
have warmed faster than the GMST average over both the 1900–2020 
and 1980–2020 periods (Gulev et al., 2021). At more regional scales, 
particularly in data sparse regions, they also found that considerable 
uncertainty is introduced by sometimes large differences in trends be
tween different land surface air temperature datasets. 
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Building on these known and predicted features of global climate 
change, this study assesses the day-night-averaged warming status and 
evolution in the first two decades of the 21st century with 0.1 and 0.05- 
degree spatial resolution and global land surface coverage, with 
particular focus on high latitude regions. The use of high spatial reso
lution data makes it possible to probe into geographical patterns of local 
warming, which is critical to climate hazards assessments. We used two 
independent datasets of land surface temperature, allowing us to check 
the robustness of the data. 

The monthly Land Surface Temperature (LST) remote sensing data 
(Wan et al., 2015) from Moderate Resolution Imaging Spectroradi
ometer (MODIS, 2022) of NASA have a spatial resolution of 0.05o x 
0.05o (5600 m × 5600 m at the equator) and global coverage, and have 
been recognized and well used for land surface temperature estimates 
for various land regions globally (Benali et al., 2012; Chen et al., 2017; 
Eleftheriou et al., 2018; Meyer et al., 2016; Zhang et al., 2016). The data 
were validated by the radiance-based approach to have a mean bias 
within 1 K in most cases, including lake, vegetation and soil sites in 
clear-sky conditions (Wan, 2008; Wan and Li, 2008), and were also 
found to well agree with ground LSTs, with differences comparable, or 
smaller, than the uncertainties of the ground measurements (Coll et al., 
2005). 

In addition to MODIS LST data, the monthly Skin Temperature (SKT) 
reanalysis data (Muñoz Sabater, 2019) from ERA5-Land of ECMWF 
(ECMWF, 2022), having a resolution of 0.1o x 0.1o and global coverage, 
were also analyzed in parallel with MODIS LST data to allow analysis of 
a longer time period. ERA5-Land is a replay of the land component of the 
ERA5 climate reanalysis, forced by meteorological fields from ERA5. 
The data are produced under a single simulation, without coupling to 
the atmospheric module of the ECMWF's Integrated Forecasting System 
(IFS) or to the ocean wave model of the IFS, and also without data 
assimilation. ERA5-Land SKT data have been found to have a spatial and 
temporal averaged difference of 1 K compared to MODIS LST data in the 
period 2003–2018 (Muñoz-Sabater et al., 2021). ERA5-Land datasets 
have also been widely used for a variety of land condition assessments 
(Chen et al., 2021; Crowhurst et al., 2021; Pelosi et al., 2020; Sheridan 
et al., 2020; Stefanidis et al., 2021). Both MODIS and ERA5-Land 
datasets are publicly available. 

Land surface temperature trends were estimated globally, conti
nentally, and pixel-wise with global average for the time period 
2001–2020 using both of the datasets. Rate of temperature change, in oC 
per decade, was obtained as the slope of the linear regression through 
the 20-yr annual mean data in the respective spatial scales. While a 20-yr 
period can still be affected by internal climate variability, in particular 
on local and regional scales, the regression allows an evaluation of the 
significance of emergent trends relative to internal, interannual vari
ability. Based on this, we emphasized the selection of regions with sta
tistically significant temperature rate of change to ensure proper 
interpretation of trends. 

The common period of MODIS vs. ERA5-Land is the 20 years from 
2001 to 2020. In order to explore warming trends over a longer period, 
we also analyzed the full 40-yr data available in the ERA5-Land database 
from 1981 to 2020. The difference between the warming trends of the 
full 40 years and the most recent 20 years was also examined. 

2. Data and methodology 

2.1. MODIS LST dataset 

We used MODIS product MOD11C3 v006 level-3 data distributed by 
NASA's Land Processes Distributed Active Archive Center (LP DAAC) 
(MODIS) for the MODIS version of land surface temperature. The 
MOD11C3 Version 6 product provides monthly Land Surface Temper
ature and Emissivity (LST&E) values in a 0.05o (5600 m at the equator) 
latitude/longitude Climate Modeling Grid (CMG), available from 
February 2000 onwards. The LST&E values in the MOD11C3 product are 

derived by compositing and averaging the values from the correspond
ing month of MOD11C1 daily files. In this product, cloud-contaminated 
LST values were removed (cloud-masked) to include only clear-sky 
conditions in the level-3 data at a confidence ≥ 95% over land ≤
2000 m, or ≥ 66% over land >2000 m, and at a confidence of ≥ 66% 
over lakes (Wan, 2013). Statistical and viewing angle dependence ana
lyses of the retrieved surface emissivity values indicate that the Version 
6 level-3 LST products are much better in providing more stable results 
than the previous Version 4.1 and Version 5 products (Wan, 2014). 
Monthly Day LST and Night LST were averaged to yield the mean LST of 
the months, and thus the annual mean LST. 

2.2. ERA5-Land SKT dataset 

We used ERA5-Land product ‘Skin temperature’ data distributed by 
Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 
(ECMWF) for the ERA5-Land version of land surface temperature 
(Muñoz-Sabater et al., 2021). The data product provides monthly tem
perature values in a 0.1o (11,200 m at the equator) latitude/longitude 
Climate Modeling Grid (CMG), available from January 1981 onwards. 
The skin temperature is the theoretical temperature that is required to 
satisfy the surface energy balance. It represents the temperature of the 
uppermost surface layer, which has no heat capacity and so can respond 
instantaneously to changes in surface fluxes. Monthly SKT data were 
averaged to yield annual mean SKT. 

2.3. Pixel selection criteria 

MODIS monthly LST data are available for each of the 0.05o x 0.05o 

pixels throughout the global land, except for those that were cloud- 
masked. We required that for the computation of global or regional 
yearly mean of MODIS LST and ERA5-Land SKT, only pixels that have 
valid (non-cloud-masked) data in each month are taken into account to 
avoid bias. A pixel that does not meet the requirement was omitted in 
both data and area when the global/regional mean of that year is 
calculated. Pixels that do not meet the criteria are shown in blank in the 
figures. 

2.4. Geographical weighting 

The longitudinal length of a fixed-angle rectangle decreases as the 
pixel goes from the equator toward the poles. Consequently, the area of a 
pixel also reduces along the path. Therefore, when calculating an 
average quantity over an area using fixed-angle grids (pixels), the 
geographical weighting factor, namely the area of a pixel in this study, 
was applied to account for the area difference of pixels in different 
latitudes. 

2.5. Temperature rate of change and significance 

There are various statistical methods that can be used for the study of 
temperature trends. BFAST (Verbesselt et al., 2010) and Greenbrown 
(Forkel et al., 2013), for example, are methods that can remove seasonal 
variations and identify temperature breakpoints or anomalies in the 
temperature time series (Akinyemi et al., 2019; Muro et al., 2018). Here 
in this work, since the purpose is to understand the general trends of 
temperature in the past decades in global land areas, we adopted the 
simple linear regression for estimating temperature rate of change 
throughout this study. Given the 20 pairs of LST-year (and SKT-year) 
data in 2001–2020: (LSTi, Yi), i = 1, …,20, the relationship between 
LSTi and Yi can be modelled as: 

LSTi = α+ βYi + εi (1)  

where α, β, and ε are the modelled intercept, slope and error term, 
respectively. 
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The slope of regression was defined as the temperature rate of change 
in the unit of oC/decade in this study. P-value was used to determine the 
statistical significance of the linear regression. We set the alpha level of 
p-value to be 0.05, below which the regressed temperature rate of 
change being due to random chance is lower than 5%, and is therefore 
statistically significant. R-squared measures the goodness-of-fit for 
linear regression models, indicating the percentage of the variance 
explained by the models. Slope, intercept, p-value and r-squared in the 
regression were all calculated using the function ‘scipy.stats.linregress’ 
in Python language version 3.7.4. 

2.6. Classification of land regions on earth 

Based on the land regions defined in the RECCAP project (Canadell 
et al., 2011; Ciais et al., 2021), the terrestrial land masses are classified 
into nine regions in this study as shown in Fig. 1. For each of the nine 
terrestrial land regions and for each of the 20 years, annual mean MODIS 
and ERA5-Land temperatures were calculated as area weighted averages 
over all the pixels within the respective region, and temperature rate of 
change for each region was respectively analyzed by regression. 

3. Results 

3.1. Global temperature distributions in the period 2001–2020 

There are intrinsic differences between the two datasets. The data
sets utilize different algorithms and parameters in data measurement 
and modeling techniques. Furthermore, MODIS data are cloud-free, 
while ERA5-Land data are available in any cloud conditions. These all 
will result in variability and uncertainty in reporting land surface tem
perature data. Therefore, before performing regression analysis for 
temperature rate of change, we examined global temperature distribu
tions in the period 2001–2020 from both of the datasets for the evalu
ation of consistency. 

Fig. 2a displays the global distribution of MODIS LST averaging over 
2001–2020. Blank pixels are those that do not have valid data for at least 
one full year during the period due to persistent cloud blockage to the 
satellites. Mean LST of the past two decades worldwide ranges from 

-63 ◦C to 41 ◦C, depending on latitudes and geographical features. 
Similarly, Fig. 2b displays the global distribution of ERA5-Land SKT 
averaging over the same period, showing mean SKT values ranging from 
-58 ◦C to 40 ◦C. Despite their independent data sources, the comparison 
between Fig. 2a and b shows prominent similarity in the spatial patterns 
of MODIS and ERA5-Land temperature distributions. 

The relative and absolute difference between the two datasets are 
provided in Fig. 2c and d, respectively. Fig. 2c indicates that ERA5-Land 
tends to estimate temperature lower than MODIS does in barren lands, 
while in cryosphere regions, ERA5-Land tends to estimate higher. Fig. 2d 
shows that for most of the lands, the absolute difference between the two 
temperature estimates is within approximately 2 ◦C (in blue). The 
highest absolute difference occurred mostly in Antarctica, Greenland, 
and the Tibetan Plateau, reaching as high as 6 ◦C or more. 

For the temperature time series 2001–2020, the Root Mean Square 
Error (RMSE) as well as the correlation coefficient between the two 
datasets were also studied. Only pixels with a full length of 20-year valid 
data were examined. The results show that the RMSE distribution 
(Fig. 2e) is very similar to the distribution of the absolute difference 
(Fig. 2d). Except for Antarctica, most of the land pixels have an RMSE 
within approximately 2 ◦C (in blue). Most of the correlation coefficients 
(Fig. 2f) of pixels have a value higher than 0.8. Both of the distributions 
indicate a good consistency between the datasets in the 20-yr time series 
despite the intrinsic differences in data sources. 

3.2. Temperature rate of change in global and regional scales 

3.2.1. MODIS and ERA5-Land in the period 2001–2020 
The change rates of MODIS and ERA5-Land temperatures in 

2001–2020 were estimated globally and regionally using the yearly 
mean temperatures in the period. Global and regional temperature rate 
of change obtained as the slope of the regression as well as the p-values 
and r2 are summarized in Table 1 for both MODIS and ERA5-Land 
temperatures. 

MODIS and ERA5-Land yearly mean temperatures are shown side by 
side for each region. As a result, both of the datasets reveal that only the 
Arctic, Russia, Europe, and the Global mean temperature have temper
ature change rates that are statistically significant among all continents 

Fig. 1. Classification of nine regions of the world used in this study. North America, Europe, and Russia refer to their regions excluding the parts in the Arctic.  
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and regions in the period 2001–2020. North America and Antarctica are 
found by both datasets to have insignificant rate of change. Asia, Africa, 
South America, and Oceania are not significant in MODIS but significant 
in ERA5-Land. This could reflect that MODIS data in these regions often 
have areas blocked by clouds in different years, which causes fluctuation 
in the yearly mean values in those regions and thus increases their p- 
values. On the contrary, ERA5-Land data do not have the issue of clouds, 
and therefore the yearly means are more stable and thus more likely to 
yield significant trends. 

With both datasets considered, the global mean land temperature 
had an average rate of change of 0.26–0.34 ◦C/decade in 2001–2020. 
The fastest regional warming occurred in the Arctic with a rate of 
0.72–0.86 ◦C/decade, which are 2.5–2.8 times the global average, while 
Russia and Europe had temperature change rates up to 2.5 and 2.4 times 
the global averages, respectively. 

3.2.2. ERA5-Land in the period 1981–2020 
In order to assess the trends of temperature in a longer time period, 

the full 40-yr data available in ERA5-Land for the period 1981–2020 
were also analyzed (Table 2). 

The results indicate that all the regions had significant temperature 
change rates in the period, with most of their p-values much lower than 
0.05. Similar to the period in 2001–2020, regions having the highest rate 
of change are the Arctic, Europe, and Russia in the 40-yr period. It is 
noticeable that in these three regions, the rates of temperature change in 
the 40-yr period 1981–2020 are lower than that in the latter half of the 
40-yr period. This is true also for other regions except for Asia and 
Africa. 

The comparison between rate of temperature change over the past 
20-yr and the 40-yr period reveals that global and continental warming 
rates were not constant through the past decades (Fig. S1). 

Fig. 2. Global land surface temperatures in 2001–2020. (a) From MODIS LST. (b) From ERA5-Land SKT. (c) Difference between the 20-yr mean MODIS LST and 
mean ERA5-Land SKT, shown as the former subtracted by the latter. (d) Panel (c) shown in absolute values. (e) RMSE between MODIS and ERA5-Land in the period 
2001–2020. (f) Correlation coefficient between MODIS and ERA5-Land in the period 2001–2020. MODIS data were resampled in the grid of ERA5-Land before 
performing the comparisons in (c), (d), (e) and (f). 
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Table 1 
Global and regional yearly mean land temperature (◦C) and rate of change from MODIS and ERA5-Land datasets for the 20-yr period 2001–2020. Categories with p-value <0.05 in the regression for rate 
of change are shown in red, indicating statistically significant trends of temperature change. 

MODIS ERA5 MODIS ERA5 MODIS ERA5 MODIS ERA5 MODIS ERA5 MODIS ERA5 MODIS ERA5 MODIS ERA5 MODIS ERA5 MODIS ERA5

2001 7.2 9.2 -16.4 -14.8 6.3 6.9 7.9 8.5 -4.5 -2.8 14.9 15.1 27.0 25.5 20.3 21.9 23.3 23.1 -40.8 -37.0
2002 8.0 9.4 -16.1 -14.8 5.7 6.4 8.7 9.0 -3.9 -2.3 15.7 15.3 26.6 25.7 20.6 22.2 24.3 24.3 -40.0 -36.2
2003 7.7 9.3 -15.6 -14.2 6.2 6.7 8.6 8.7 -3.7 -2.0 14.8 14.9 26.7 25.8 20.4 22.2 24.1 24.0 -40.9 -37.1
2004 7.4 9.2 -17.0 -15.4 5.7 6.2 8.0 8.6 -4.3 -2.5 15.4 15.3 26.5 25.6 19.9 22.1 23.7 23.8 -41.2 -37.3
2005 7.8 9.6 -15.2 -13.6 6.2 7.0 8.2 8.5 -3.4 -1.8 14.8 15.1 26.7 26.0 20.1 22.2 24.5 24.6 -40.6 -36.7
2006 7.6 9.4 -15.7 -14.2 6.8 7.4 8.4 8.9 -4.9 -2.9 15.4 15.5 26.5 25.5 20.2 22.2 23.7 23.8 -41.2 -37.2
2007 7.9 9.6 -15.4 -13.9 5.8 6.6 9.1 9.3 -2.9 -1.1 15.6 15.5 26.6 25.6 20.2 22.1 24.1 23.9 -40.2 -36.5
2008 7.5 9.3 -15.9 -14.3 5.3 6.1 8.7 9.1 -3.2 -1.4 15.0 15.2 26.6 25.5 20.1 22.1 23.6 23.8 -40.7 -37.5
2009 7.7 9.4 -16.0 -14.8 5.7 6.2 8.3 9.0 -4.5 -2.8 15.4 15.4 26.8 25.9 20.5 22.3 24.0 24.2 -40.3 -36.5
2010 7.7 9.5 -14.6 -13.3 6.4 7.3 7.3 7.9 -4.5 -2.9 15.1 15.5 27.1 26.3 20.6 22.4 23.2 23.2 -41.5 -37.5
2011 7.3 9.3 -15.3 -13.7 5.9 6.7 8.9 9.1 -3.5 -1.9 14.4 14.9 26.6 25.6 19.7 22.0 22.5 22.8 -40.1 -36.5
2012 7.4 9.4 -14.9 -13.5 6.9 7.4 8.4 8.8 -4.0 -2.2 14.2 14.8 26.6 25.7 20.4 22.3 23.6 23.6 -41.1 -37.4
2013 7.8 9.5 -15.7 -14.5 5.7 6.4 8.5 8.8 -3.6 -1.8 15.0 15.2 27.0 25.9 20.9 22.2 25.0 24.7 -40.5 -36.6
2014 7.7 9.4 -15.5 -14.2 5.7 6.4 9.4 9.7 -3.7 -2.1 15.3 15.2 27.1 25.9 20.8 22.3 24.5 24.3 -40.9 -37.2
2015 8.1 9.7 -15.7 -14.2 6.4 7.0 9.5 9.7 -2.9 -1.2 16.0 15.5 27.0 26.1 21.2 22.7 24.3 24.3 -41.7 -37.5
2016 8.1 10.0 -14.0 -12.6 6.9 7.6 8.8 9.3 -3.4 -1.6 15.3 15.7 27.1 26.4 20.7 22.6 24.2 24.1 -41.0 -36.8
2017 7.8 9.8 -15.1 -13.3 6.4 7.3 8.9 9.3 -3.2 -1.4 15.5 15.6 26.6 26.1 20.3 22.5 24.1 24.3 -41.4 -37.0
2018 7.6 9.7 -15.5 -13.7 5.9 6.7 9.3 9.7 -3.6 -2.0 15.0 15.5 26.5 26.1 20.1 22.3 24.4 24.6 -40.7 -36.3
2019 8.2 9.9 -14.6 -13.0 5.9 6.7 9.4 9.9 -3.1 -1.2 15.7 15.6 26.7 26.2 20.7 22.7 24.9 25.3 -40.8 -36.5
2020 8.3 10.1 -14.6 -12.6 6.3 7.1 9.7 10.2 -2.0 -0.2 15.6 15.5 26.6 26.1 20.8 22.8 24.3 24.4 -40.7 -36.1

mean 7.7 9.5 -15.4 -13.9 6.1 6.8 8.7 9.1 -3.6 -1.9 15.2 15.3 26.7 25.9 20.4 22.3 24.0 24.1 -40.8 -36.9

p-value 0.011 0.000 0.002 0.000 0.446 0.234 0.002 0.000 0.007 0.006 0.342 0.034 0.591 0.001 0.065 0.000 0.116 0.040 0.254 0.359

R-squared 0.31 0.64 0.41 0.50 0.03 0.08 0.42 0.52 0.34 0.35 0.05 0.23 0.02 0.47 0.18 0.61 0.13 0.21 0.07 0.05
oC/decade 0.26 0.34 0.72 0.86 0.13 0.20 0.62 0.63 0.65 0.68 0.16 0.20 0.05 0.31 0.25 0.32 0.34 0.43 -0.20 0.16

Africa S. America Oceania AntarcticaGlobal Arctic N. America Europe Russia Asia
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To look more closely into the temperature change rates obtained 
from different periods, we further analyzed the earlier 20-yr period 
1981–2000 for comparison (Table 3). 

Unlike in the latest 20-yr period 2001–2020, in the earlier 20-yr 
period 1981–2000, only Asia and Africa had significant temperature 
change rates. 

Comparing the results of warming rates of the three different periods, 
it is summarized that the later 20-yr period 2001–2020 had stronger and 
more significant warming trends than the earlier 20-yr period 
1981–2000 in most of the regions in the world. This suggests that global 
and regional warming is accelerating in the past decades. 

3.3. Temperature rate of change in the Arctic by month 

3.3.1. MODIS and ERA5-Land in the period 2001–2020 
The enhanced and accelerated warming in the Arctic, in comparison 

with that for the entire globe, is known as Arctic amplification (Serreze 
and Francis, 2006). It is commonly attributed to sea-ice loss (Parmentier 
et al., 2013), fast atmospheric processes (Previdi et al., 2020), and ocean 
heat transport (van der Linden et al., 2019). To study the seasonal 
dependence of terrestrial Arctic amplification, we averaged tempera
tures of all the land pixels located above 66.5oN and analyzed the 
temperature change rate in the 20 years for each month. 

Fig. 3a and b show the monthly mean temperature for March to 
August in 2001–2020, respectively from MODIS and from ERA5-Land 
temperatures, while Fig. 3c and d are for September to February. 

Fig. 3e indicates that the trends of monthly temperature rate of 
change along the year are consistent in the two datasets. February and 
April appear to be the two months that had the fastest warming trends in 
both of the datasets, with rates between 1.16 and 1.67 ◦C/decade. The 
terrestrial Artic warmed up the fastest in late winter to early spring, and 
the slowest in the summer in the past two decades. December and July 
were the two months that had the lowest rate of change. Global mean 
temperature rate of change by month are also shown, revealing the 
pronounced Arctic amplification. 

3.3.2. Statistical significance of temperature trends obtained from different 
time scales 

The 40-yr temperature data available in ERA5-Land provide the 
opportunity to examine temperature rate of change in the Arctic in 
different time scales. As shorter time periods may not be sufficient to 
yield statistically significant temperature rates of change, we checked 
the p-values of the regressions of various time scales to probe the rela
tion between the length of time period and the level of significance. 

The whole period of 1981–2020 can be divided into four 10-yr pe
riods, three 20-yr periods, two 30-yr periods, or one 40-yr period. 
Temperature rate of change for each month in each period has an 
associated p-value when performing regression analysis (Table S1). 

It is noticeable that longer periods tend to cause more months to have 
a statistically significant rate of change. The frequency of the appear
ance of p-values lower than 0.05 reveals that the two 30-yr periods and 
the 40-year period yield a statistically significant temperature rate of 

Table 2 
Global and regional yearly mean land temperature (◦C) and rate of change from ERA5-Land dataset for the 40-yr period 1981–2020. Categories with p-value <0.05 in 
the regression for rate of change are shown in red. 

Global Arctic N. America Europe Russia Asia Africa S. America Oceania Antarctica
EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land

1981 9.0 -14.6 7.0 7.8 -2.3 14.6 25.0 21.7 23.5 -36.4
1982 8.5 -16.2 5.2 8.3 -3.0 14.4 24.9 21.7 23.5 -37.4
1983 8.9 -15.5 5.8 8.5 -2.0 14.5 25.3 22.0 23.6 -37.4
1984 8.5 -15.5 5.8 7.9 -3.4 14.1 25.1 21.4 22.9 -36.9
1985 8.5 -15.3 5.5 7.1 -3.7 14.4 24.9 21.5 23.6 -37.7
1986 8.7 -15.8 6.2 7.8 -2.9 14.4 25.0 21.6 23.7 -37.2
1987 8.9 -15.9 6.9 7.2 -4.3 14.8 25.7 22.1 23.6 -37.7
1988 9.1 -14.8 6.3 8.3 -2.2 14.9 25.3 21.9 24.0 -36.9
1989 8.8 -15.6 5.8 9.2 -1.9 14.6 25.0 21.7 23.3 -37.4
1990 9.2 -15.5 6.2 9.2 -2.0 15.0 25.6 21.9 23.9 -36.9
1991 9.1 -15.1 6.4 8.2 -2.3 14.8 25.3 21.8 24.0 -36.4
1992 8.6 -16.2 5.8 8.6 -2.7 14.2 25.1 21.6 23.2 -37.1
1993 8.7 -15.2 5.9 7.9 -2.9 14.3 25.3 21.8 23.4 -37.8
1994 8.9 -15.4 6.3 8.9 -3.1 14.8 25.2 22.0 23.7 -37.8
1995 9.2 -14.4 6.4 8.5 -1.3 14.9 25.5 22.1 23.2 -37.5
1996 8.8 -14.8 5.7 7.5 -3.2 14.4 25.3 21.8 23.7 -36.6
1997 8.9 -15.1 6.1 8.3 -2.7 14.7 25.3 22.1 23.5 -37.7
1998 9.3 -15.2 7.3 8.3 -3.4 15.3 25.8 22.5 24.0 -37.6
1999 9.0 -15.6 6.9 8.8 -3.0 15.2 25.4 21.7 23.2 -37.6
2000 8.9 -15.1 6.5 9.2 -2.9 14.8 25.2 21.5 22.6 -37.4

2001 9.2 -14.8 6.9 8.5 -2.8 15.1 25.5 21.9 23.1 -37.0
2002 9.4 -14.8 6.4 9.0 -2.3 15.3 25.7 22.2 24.3 -36.2
2003 9.3 -14.2 6.7 8.7 -2.0 14.9 25.8 22.2 24.0 -37.1
2004 9.2 -15.4 6.2 8.6 -2.5 15.3 25.6 22.1 23.8 -37.3
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Table 3 
Global and regional yearly mean land temperature (◦C) and rate of change from ERA5-Land dataset for the earlier 20-yr period 1981–2000. Categories with p-value <0.05 in 
the regression for rate of change are shown in red. 

Global Arctic N. America Europe Russia Asia Africa S. America Oceania Antarctica
EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land EAR5-Land

1981 9.0 -14.6 7.0 7.8 -2.3 14.6 25.0 21.7 23.5 -36.4
1982 8.5 -16.2 5.2 8.3 -3.0 14.4 24.9 21.7 23.5 -37.4
1983 8.9 -15.5 5.8 8.5 -2.0 14.5 25.3 22.0 23.6 -37.4
1984 8.5 -15.5 5.8 7.9 -3.4 14.1 25.1 21.4 22.9 -36.9
1985 8.5 -15.3 5.5 7.1 -3.7 14.4 24.9 21.5 23.6 -37.7
1986 8.7 -15.8 6.2 7.8 -2.9 14.4 25.0 21.6 23.7 -37.2
1987 8.9 -15.9 6.9 7.2 -4.3 14.8 25.7 22.1 23.6 -37.7
1988 9.1 -14.8 6.3 8.3 -2.2 14.9 25.3 21.9 24.0 -36.9
1989 8.8 -15.6 5.8 9.2 -1.9 14.6 25.0 21.7 23.3 -37.4
1990 9.2 -15.5 6.2 9.2 -2.0 15.0 25.6 21.9 23.9 -36.9
1991 9.1 -15.1 6.4 8.2 -2.3 14.8 25.3 21.8 24.0 -36.4
1992 8.6 -16.2 5.8 8.6 -2.7 14.2 25.1 21.6 23.2 -37.1
1993 8.7 -15.2 5.9 7.9 -2.9 14.3 25.3 21.8 23.4 -37.8
1994 8.9 -15.4 6.3 8.9 -3.1 14.8 25.2 22.0 23.7 -37.8
1995 9.2 -14.4 6.4 8.5 -1.3 14.9 25.5 22.1 23.2 -37.5
1996 8.8 -14.8 5.7 7.5 -3.2 14.4 25.3 21.8 23.7 -36.6
1997 8.9 -15.1 6.1 8.3 -2.7 14.7 25.3 22.1 23.5 -37.7
1998 9.3 -15.2 7.3 8.3 -3.4 15.3 25.8 22.5 24.0 -37.6
1999 9.0 -15.6 6.9 8.8 -3.0 15.2 25.4 21.7 23.2 -37.6
2000 8.9 -15.1 6.5 9.2 -2.9 14.8 25.2 21.5 22.6 -37.4

mean 8.9 -15.3 6.2 8.3 -2.8 14.7 25.3 21.8 23.5 -37.3

p-value 0.063 0.266 0.109 0.095 0.967 0.013 0.035 0.123 0.495 0.202

R-squared 0.18 0.07 0.14 0.15 0.00 0.30 0.22 0.13 0.03 0.09
oC/decade 0.16 0.20 0.31 0.38 -0.01 0.28 0.19 0.15 -0.10 -0.22
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change for almost all the months. Temperature rate of change by month, 
therefore, was evaluated by 30-year and 40-year periods in 3.3.3. 

3.3.3. Temperature rate of change evaluated by 30-year and 40-year 
periods 

When comparing temperatures in the latest 30-yr period 
(1991–2020) with that of the earlier 30-yr period (1981–2010) in the 

Arctic, it is evident that the later period had higher temperature rates of 
change in almost all the months. And the full 40-yr curve appears to be 
the “average” curve of the earlier 30-yr curve and the later 30-yr curve, 
as expected. (Fig. 4). 

This reveals that warming is faster in the later years than in the 
earlier years. With the full 40-year data available in ERA5-Land, we 
show that warming is accelerating in the Arctic in almost all the months. 

Fig. 3. Monthly land temperature averaged in the Arctic in 2001–2020 from MODIS LST and ERA5-Land SKT and temperature rate of change by month. (a) From 
MODIS for March to August(b) From ERA5-Land for March to August. (c) From MODIS for September to February. (d) From ERA5-Land for September to February. 
(e) Arctic temperature rate of change by month from MODIS and ERA-Land temperatures, where error bars indicate ±2 standard error for 95% confidence interval 
from the regression for the rate of change of each month. Global mean temperature change rates by month are also shown for comparison. 
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3.4. Temperature rate of change in pixel scale 

3.4.1. MODIS and ERA5-Land in the period 2001–2020 
While the global and regional land temperature rate of change were 

estimated using the averaged MODIS and ERA5-Land temperatures of 
the entire region, the individual grid pixels, however, can have vari
abilities in the trend of temperature change. For a closer spatial analysis, 
the spatial distributions of temperature trends were studied by checking 
each pixel worldwide. Similar to the regional assessment, temperature 
rate of change of a pixel was estimated using linear regression of the 20- 
yr annual mean data of that pixel, as shown in Fig. 5a and b. 

The two distributions share noticeable similarity between MODIS 
and ERA5-Land. Both of them exhibit distinctive temperature change 
rates in northern Siberia, northern Alaska, and most of Europe in similar 
patterns. However, a noticeable divergence was found in Antarctica, 
where MODIS shows more moderate temperature change rates in cool
ing and warming, while ERA5-Land shows more considerable warming 
in large areas. 

The p-value of each pixel from the temperature regression for 
2001–2020 was also calculated. Fig. 6 displays the global distribution of 
p-value from MODIS and from ERA5-Land. Pixels with p < 0.05 are 
shown in Fig. 6c and d respectively for MODIS and ERA5-Land tem
peratures, indicating the locations where the temperature rates of 
change are statistically significant. Both of the similar distributions 
reveal that northern Siberia, northern Alaska, Eastern and Central 
Europe were the regions that had significant and faster rates of warming 
worldwide over the past two decades. Fig. 5e and f are the Standard 
Error (SE) of the pixels in the regression for rate of change, respectively 
for MODIS and ERA5-Land. The two figures show that the SE of most of 
the pixels is <0.1 ◦C for both of the datasets. 

3.4.2. ERA5-Land in the period 1981–2020 
In order to examine whether the trends obtained in relatively short 

20-yr period are representative for extended periods, the full 40-yr data 
available in ERA5-Land in the period 1981–2020 were analyzed in the 
same way as for 2001–2020. Temperature rates of change of pixels are 
indicated in Fig. 7. 

Similar to the 20-yr period 2001–2020, pixels in northern Siberia 
also have the highest rate of change in the 40-yr period 1981–2020. 
However, unlike the period 2001–2020, pixels in this longer period have 
significant temperature change rates in 1981–2020 across most of the 
world. 

It is demonstrated that the regional trends obtained from the 40-yr 
period conform to the results from the 20-yr period of both of the 
datasets. When the length of the period doubles, more regions were 
found to display significant warming trends, which are not revealed in 
the shorter period due to the limitation of data length. 

3.4.3. Antarctica in the period 2001–2020 
In addition, the polar views of Antarctica showing pixels with sta

tistically significant temperature rate of change are shown in Fig. 8. The 
distributions from MODIS and from ERA5-Land temperatures in 
Antarctica are not as consistent as in other regions. However, for a part 
of the coastal areas (shown by arrows), in the areas where warming 
permafrost sites have been documented (Biskaborn et al., 2019), both 
datasets show statistically significant warming trends. The results indi
cate that warming in Antarctica is mostly confined to a narrow coastal 
zone, suggesting a critical role of ocean influence (Hellmer et al., 2012; 
Shepherd et al., 2004) on the thawing of Antarctic permafrost, while 
inland Antarctica is less affected due to altitudinal effects. 

On the other hand, regions with decreasing temperature trends were 
also revealed. As shown already in Fig. 2(e) and 2(f), MODIS and ERA5- 
Land differ in large parts of Antarctica. 

3.4.4. Circumpolar Arctic region in the period 2001–2020 
Further analysis was performed for the fast-warming circumpolar 

region, where permafrost is located. Fig. 9a and b are the polar views of 
Fig. 5c and d, exhibiting pronounced conformity between the two 
datasets in areas having statistically significant temperature trends as 
well as in the rate of warming of these areas. 

Fig. 9c and d are respectively the distributions of permafrost areas 
(Rekacewicz, 2005) and land cover types (Ahlenius, 2005) in the 
circumpolar region created by UNEP/GRID-Arendal. By comparison, it 
is noticeable that the fast warming areas shown in northern Siberia and 
northern Alaska coincide with the areas of continuous permafrost, 
indicating that the continuous permafrost has experienced the fastest 
land surface warming in the world in 2001–2020. This pixel-wise 
analysis, together with the use of p-value selection to mask the insig
nificant areas, has generalized the studies of permafrost temperature 
change rates from scattered borehole locations (Biskaborn et al., 2019) 
to extended geographical coverage. Fig. 9d further shows that tundra is 
the dominant land cover in these fast-warming areas. 

4. Discussion 

4.1. Difference of temperature estimates between MODIS and ERA5-Land 

The difference of temperature estimates between the two datasets 
has previously been studied by difference approaches. The Root Mean 
Squared Error (RMSE) of temperature estimates between MODIS and 
ERA5-Land found in (Muñoz-Sabater et al., 2021) has a global pattern 
similar to the distribution of temperature absolute difference shown in 
Fig. 2d in this study. 

For Antarctica, where the difference is most considerable, Fréville 
et al., 2014 found a widespread warm difference ranging from +3 to 
+6 ◦C in ERA reanalysis data compared to MODIS, and they showed that 
ERA-Interim/land simulations indicated that the difference may be due 
primarily to an overestimation of the surface turbulent fluxes in very 
stable boundary layer conditions. 

4.2. Cloud effect 

The effect of clouds in affecting temperature rate of change in this 
work is worth studying. Given the fact that MODIS LST provides data 
under cloud-free condition only, and ERA5-Land does not have cloud 
information, we therefore turned to another dataset. The ERA5 SKT 
dataset, an ECMWF dataset earlier than the ERA5-Land release, has daily 
data of cloud cover percentage as well as SKT, with a coarser spatial 

Fig. 4. Temperature trends in the Arctic obtained by two 30-yr periods and one 
40-yr period in ERA5-Land. Error bars indicate ±2 standard error for 95% 
confidence interval from the regression for the rate of change of each month. 
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resolution of 0.25o x 0.25o than the resolution of ERA5-Land being 0.1o x 
0.1o. 

To examine the effect of clouds in different levels of cloud cover 
percentage, we set the thresholds of maximum cloud cover allowance to 
be 0%, 20%, 50%, and 100%. The cloud cover percentage of a day below 
the threshold is treated as “cloud-free”, and the monthly SKT of a pixel is 
determined as the mean of the cloud-free days in the month. Then, 
global and regional temperature rate of change were obtained from 
ERA5 SKT dataset with respect to the different level of cloud cover 
thresholds. 

The results suggest that changing the threshold, in general, also 
changes the temperature rate of change. However, the changes do not 
cause contradicting results to our main findings using MODIS LST and 
ERA5-Land SKT. In addition, regardless of the threshold level of cloud 
cover, the Arctic, Europe, and Russia always have the highest temper
ature rate of change among all the regions, which is the same as what we 
obtained in this work. P-values also indicate that the rates of change are 

highly statistically significant in all the categories, except for a few cloud 
levels in Antarctica (Fig. S2, Table S2). 

4.3. Difference between air temperature and surface temperature 

In the research of climate change, air temperature is normally the 
indicator rather than surface temperature. Our work is based on surface 
temperature owing to the fact the it is the common temperature product 
available in both MODIS and ERA5-Land datasets. 

In order to assess the difference in global and regional rate of change 
between air temperature and surface temperature, we used the “ERA5- 
Land T2M” dataset for temperature 2-m above ground for this purpose. 

To obtain global and regional 2-m air temperature rate of change, the 
dataset was processed in the same procedure performed for ERA5-Land 
SKT. The results revealed that the trends of T2M and SKT temperatures 
are very similar in global and regional scales, even with very close p- 
values (Table S3). 

Fig. 5. Land surface temperature rate of change (oC/decade) in 2001–2020 from MODIS LST and ERA5-Land SKT. (a) From MODIS. (b) From ERA5-Land. (c) Pixels 
with statistically significant trends from MODIS. (d) Pixels with statistically significant trends from ERA5-Land. (e) Standard Error (SE) in the regression for the 
temperature rate of change of MODIS. (f) SE in the regression for the temperature rate of change of ERA5-Land. Note that in (a) and (e), South America, Africa, South 
Asia, and northern Australia contain blank areas due to the requirement in this study that a pixel must have 20-yr complete, non-cloud-masked data for performing 
the regression for temperature rate of change. Regional temperature rates of change that are statistically significant are labeled in (a) and (b). 
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Thus, the temperature trends shown in this work using MODIS LST 
and EAR5-Land SKT can also reasonably represent the temperature 
trends of air temperature. 

4.4. Internal climate variability and anthropogenic climate change 

This study presents the analysis results of global and regional 
warming status and evolution in the past decades with 0.1 and 0.05-de
gree spatial resolution and global land surface coverage. However, the 
temperature change rates revealed in those different spatial and tem
poral scales do not necessarily result from anthropogenic climate change 
only. Natural, internal climate fluctuations are also important factors in 
many regions on the time scale studied here. In addition, land cover and 
land use change, for example, have been shown to affect MODIS LST 
(Dutrieux et al., 2012; Nguyen et al., 2020). 

Multi-decadal climate trend variability in different regions has been 
studied in recent literatures. McKinnon and Deser, 2018 used observa
tional large ensemble and found that over the past 50 years, the 
contribution of internal variability to terrestrial climate trends is non- 
negligible. Bengtsson and Hodges, 2019 found that in the 20-year 

trends, the variance of temperature at 2 m above the surface for 
Europe and the Arctic is significantly larger than for the global mean. 
Based on the ensemble study, it was concluded that internal processes in 
the climate system have played an important role in influencing decadal 
and multi-decadal temperature trends. 

In addition, Parsons et al., 2020 identified higher variability in 
CMIP6 models than before, likely due to improved process representa
tion. The Arctic was shown to have higher variability than elsewhere. 
However, it was also found that even the most variable models never 
generate unforced global temperature trends equal to the recently 
observed global warming trends forced by greenhouse gas emissions. 

It is worth noting that in this work, we performed the empirical study 
based on remotely sensed data and reanalysis-driven land surface model 
data. Therefore, the results do not distinguish effects of internal climate 
variability from anthropogenic climate change. 

4.5. Non-uniform warming trends among continents 

Our analysis confirms that global warming has been developing 
differently across continents in the past decades, with temperature 

Fig. 6. Global distribution of p-value from temperature regression analysis for 2001–2020. (a) From MODIS LST. Blank areas are pixels that do not have 20-year 
complete, non-cloud-masked data for performing the regression for temperature rate of change. (b) From ERA5-Land SKT. 
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Fig. 7. Land surface temperature rate of change (oC/decade) in 1981–2020 from ERA5-Land SKT. (a) All pixels. (b) Pixels that have statistically significant rates only.  

Fig. 8. Temperature rate of change of the pixels that had statistically significant trends in Antarctica in 2001–2020. (a) From MODIS LST. (b) From ERA5-Land SKT. 
Red arrows indicate warming areas determined by both datasets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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change rates differing by as much as two to three times (Fig. S1). While 
the northern hemisphere appears to have higher warming rates than the 
southern, the exceptionally high temperature change rates of Europe 
and Russia, however, are not seen in North America being in the similar 
latitudinal range. This implies that regional warming trends do not 
depend on latitude alone, but also on other geographical conditions, as 
well as on decadal scale modes of internal variability. 

While the full set of causes of such non-uniform warming trends 
among continents need more investigation, it is important that such 
phenomena are recognized in the public, in order that personal or 
regional climate experience is not misrepresented (Egan and Mullin, 
2012; Weber, 2006). Under such informed understanding, GHG reduc
tion policies and climate change adaptation measures can be more 
adequately established. 

4.6. Arctic permafrost as the fastest warming land 

In the strengthening global warming condition arising from the 
beginning of the 21st century, in the pixel-wise scale, the method of p- 
value-masking disclosed that the continuous permafrost in northern 

Siberia and northern Alaska, in particular, is under increasing stress 
bearing the fastest rate of warming on earth. 

In addition to feedbacks involving the Arctic sea and sea ice, the 
findings shown in Fig. 9 support the suggestions that the climate feed
back due to tundra shrubification in the permafrost may play a promi
nent role in terrestrial Arctic amplification. Arctic warming has been 
associated with increasing shrub cover across the Arctic (Elmendorf 
et al., 2012). From year 1982 to 2018, by detecting the Normalized 
Difference Vegetation Index, various remote sensing data have revealed 
13% to 42% greening trends in Arctic tundra regions (Myers-Smith et al., 
2020). In addition, shrub cover in many tundra regions are observed to 
increase and advance in response to climate warming (Forbes et al., 
2010). Snow albedo, therefore, is lowered by taller and aerodynamically 
rougher shrubs, and such a mechanism creates positive feedback loops 
that lead to a general increase in near-surface temperatures in high- 
latitudes, contributing to additional regional warming (Bonfils et al., 
2012; Rydsaa et al., 2017; Zhang et al., 2013). 

The increased warming in permafrost regions could imply strong 
feedbacks of the climate in terms of accelerating release of CO2 (Schädel 
et al., 2016) and CH4 (Koven et al., 2011) from the huge stores of organic 

Fig. 9. Areas with significant temperature rate of change, permafrost, and land cover in the circumpolar region. (a) From MODIS LST. (b) From ERA5-Land SKT. (c) 
Map of circumpolar permafrost areas made by UNEP/GRID-Arendal using data from International Permafrost Association (1998). (d) Map of land cover types made 
by UNEP/GRID-Arendal using data from GEO3 Global Environment Outlook (2002). 
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C (Hugelius et al., 2014), although to some extent counteracted by in
crease in shrub cover yeilding uptake of atmospheric CO2 (Myers-Smith 
et al., 2020). The uptake of CO2, however, is overwhelmed by the carbon 
release to the atmosphere on average, leading to net release of carbon to 
the atmosphere and accelerates climate change (Schuur et al., 2020). 
Enhanced permafrost protection (Beer et al., 2020; Macias-Fauria et al., 
2020) in the strongly warming regions, along with cooperating perma
frost monitoring measures (Gao et al., 2020; Harris et al., 2009), is 
advisable for preventing the acceleration of thawing and carbon release. 

5. Conclusions 

Evaluating global and regional temperature rate of change for the 
21st century is crucial in forming the scientific basis for the study of 
recent development of climate change. In this work, land surface tem
perature data from remote sensing-based MODIS and from model-based 
ERA5-Land were analyzed for the period 2001–2020, yielding consistent 
results. To explore beyond the limited 20-yr period, additional trend 
analyses were performed for data in the 40-yr period 1981–2020, which 
are available only with ERA5-Land. The results indicate that tempera
ture trends obtained from the relatively short 20-yr period are con
forming to the general trends in the 40-yr period. 

Warming trends were examined in global, continental, and pixel 
scales with p-values for significance. Continents and large regions were 
found to be warming at substantially different rates, with the Arctic, 
Europe, and Russia being the fastest warming regions around the globe. 
In addition, with ERA5-Land data, comparison between temperature 
change rates of different time periods reveals that warming in the Arctic 
and in most of the continents is accelerating during the 40-yr period 
1981–2020. 

Geographically, the fastest warming land on Earth during 
2001–2020 was found to coincide with the tundra biota in circumpolar 
regions in general. This suggests that the biota has been under rapid 
warming for decades, and the biological and climatic consequences are 
profound even if the warming can be due to internal climate variability 
on top of the GHG-forced climate change. Specifically, the rapid 
warming of the Arctic permafrost signals the acceleration of Arctic 
permafrost thaw and thus the deterioration of climate change in the 
onset of the 21st century. 
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