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Changes in temporal inequality of precipitation extremes over
China due to anthropogenic forcings
Weili Duan 1,2, Shan Zou1,2,3✉, Nikolaos Christidis 4, Nathalie Schaller5, Yaning Chen 1✉, Netrananda Sahu 6, Zhi Li1,
Gonghuan Fang1 and Botao Zhou 7

Based on the Gini-coefficients, this study has presented an analysis of the impacts of anthropogenic forcing on the temporal
inequality (i.e., increase in unevenness or disparity) of precipitation amounts (PRCPTOT), intensity (SDII), and extremes (R95p
and RX5day) at national and regional scales (eight regions) in China. A positive anthropogenic influence on the temporal
inequality is found for precipitation extremes over China, especially in southern regions during the period 1961–2005.
Projections of future precipitation indices except R95p have a stepped upward trend in temporal precipitation variability with
increasing anthropogenic forcing in most regions of China under SSP126, SSP370, and SSP585 scenarios. Except for Southern
China (SC) and SWC2, R95p has a significant decrease in the future, and the largest decrease is up to 29.5% in Northwest China
under SSP370. Results obtained from this study offer insights into temporal variability of precipitation extremes and help policy
makers for managing water-related disasters.
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INTRODUCTION
Extreme precipitation events have increased in recent decades,
which can inevitably be attributed to the combined influence of
natural and human activities1,2, leading to lots of water-related
disasters around the world3. Examples include heavy flooding
in the middle Yangtze River of China in 19984, late July-early
August 2010 in Pakistan5, and central Thailand in 20116,
exceptional drought in the Amazon basin in 20057 and 20108,
and California in 20149, causing marked casualties and damage
to food systems and social infrastructure. The increase of
extreme precipitation events is a prominent phenomenon of
precipitation variability, and some studies9–11 have demon-
strated a human influence on precipitation variability. There-
fore, it is important to understand and distinguish the extent of
the degree of human emissions and activities that have
contributed to the climate system and finally affected
precipitation variability.
Recent studies about the attribution of extreme weather and

climate events indicate that global warming caused by increas-
ing anthropogenic forcings could increase the moisture-holding
capacity of the atmosphere potentially, exacerbating the
frequency and severity of extreme climate events12–15. Some
of them show that precipitation variations in spatial distribution
directly caused wet regions to become wetter and dry regions
drier16,17, probably because the rising average temperature
increases water vapor in the atmosphere, leading to enhanced
moisture convergence or divergence in climatologically wet or
dry regions18. This phenomenon was also found for seasonal
precipitation, which means that wet seasons get wetter and dry
seasons get drier19. However, this argument also has been
disputed for changes over land20–22, revealing large uncertain-
ties in assessments of precipitation variability23. One of the

major sources of uncertainty is that the argument did not fully
consider the potential changes in interannual or decadal modes
of variability with global warming and the teleconnection
pathways that linked such changes to the precipitation over
land24. Some authors have analyzed the temporal behavior of
precipitation associated with a warming climate25,26, including
reports of increasing precipitation rates near the tropical cyclone
center27,28, and sensitivity of precipitation extremes to the El
Niño variations29.
Evidence for global warming impacts on the spatiotemporal

characteristics of precipitation in China is obvious30–34. Based on
the global climate model (GCM) outputs in the Coupled Model
Intercomparison Project phases 3, 5, and 6 (CMIP3, CMIP5, and
CMIP6), most studies suggested more frequency and severe
extreme heavy precipitation would happen in China35,36. Although
some progress has also been made in investigating the impact of
anthropogenic forcing on precipitation variability, most of the
research focused on trends of mean precipitation and precipita-
tion extremes and can not fully evaluate the uncertainty caused by
uncertainty in the model simulations as well as the metrics used to
define variability and detect its changes over China30,33. To further
improve our understanding of potential temporal variability (i.e.,
increase in unevenness or disparity) in precipitation characteristics
associated with a changing climate in China, it is necessary to
detect relationships at decadal and longer time scales in order to
filter out shorter-term noisy variability in precipitation temporal
variability. Thus, in this study, we have evaluated the human
contribution to potential changes in temporal inequality of
precipitation extremes from 1961 to 2005, and investigated future
changes (2061–2095) in temporal inequality of precipitation
extremes in China.
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RESULTS
Evaluation of the present-day simulations
To investigate the influence of anthropogenic forcing on
precipitation extremes, the first step is to evaluate GCMs
simulation performance for precipitation extreme indices from
1961 to 2005. Results of the evaluation of temporal variation of the
present-day simulations for the CMIP5 and CMIP6 GCMs
(Supplementary Tables 1 and 2) was shown in Fig. 1 and
Table 1. Figure 1a–c compare the Gini-coefficient of the observed
distributions and historical simulated distributions (ensemble
mean) of precipitation extreme indices from 1961 to 2005,
suggesting that both CMIP5 and CMIP6 simulations reasonably
captured the magnitudes and spatial patterns of temporal
variations for RCPTOT, SDII, R95p, and RX5day (definitions in
Supplementary Table 3), which is in line with the results from
Konapala et al.24. These four indices over China have a distinct
regional characteristic, and higher values of the Gini-coefficient
were mainly detected in the northwest compared with other
regions for CN05 (observed data), CMIP5, and CMIP6. Table 1
shows univariate statistics of the Gini-coefficient of the observed
and historical simulated precipitation extreme indices from 1961
to 2005, which indicates that R95p has the highest Gini-coefficient
for CN05, CMIP5, and CMIP6, while SDII has the lowest Gini-
coefficient. Except for RX5day in CMIP6, the skewness and kurtosis
coefficients of precipitation extreme indices are greater than 0,
suggesting that distributions of the Gini-coefficient are shifted to
the right and more peaked than the normal distribution with the
same mean and standard deviation. Moreover, CN05 has higher
skewness and kurtosis coefficients than CMIP5 and
CMIP6 simulations, which means that the shape of distributions
of the Gini-coefficient from CMIP5 and CMIP6 are much closer to
normal distributions.
Figure 1 and Table 1 also indicate that the CMIP5 and CMIP6

historical simulations underestimate the Gini-coefficients in most
regions of China for all four precipitation indices, especially in
Southwest China-region 1 (SWC1, subregions in Supplementary
Fig. 1 and Supplementary Table 4) and the Tarim River Basin, while
overestimating in a few areas, such as in northern Xinjiang
Province. The average bias in percent were −16.52%, −23.86,
−18.95, and −17.31% for RCPTOT, SDII, R95p, and RX5day
respectively in CMIP5 (Fig. 1f), and increased to −6.86, −15.02,
−14.33, and −8.01% in CMIP6, which suggests that CMIP6 has a
better performance in simulations of precipitation extremes in this
study. For both CMIP5 and CMIP6, SDII has the largest bias, while
RX5day has the lowest bias. Generally, the areas with high bias in
the Gini-coefficient of precipitation indices have sparse meteor-
ological stations (Supplementary Fig. 1) or have high altitudes
(such as SWC1), where the GCM simulations have a general
weakness in rainfall prediction37.
Overall, although the simulations of CMIP5 and CMIP6 under-

estimate the observed Gini-coefficients in some regions, they can
generally capture the spatial patterns of the annually observed
precipitation variability in China and could be used to quantify the
anthropogenic contribution to changes in the temporal variability
of RCPTOT, SDII, R95p, and RX5day.

Temporal variability of precipitation due to anthropogenic
forcings
A positive shift in the probability distributions of the averaged
bootstrap resampled Gini-coefficients has been detected for all
precipitation indices from CMIP5 NAT to ALL scenarios (Fig.
2a–d), and the value of the median Gini-coefficient increased
from 0.101 to 0.103 for PRCPTOT, 0.066 to 0.067 for SDII, 0.268 to
0.271 for R95p, and 0.142 to 0.144 for RX5day. Of them, except
for RX5day (p= 0.19), changes from the other three precipitation
indices are statistically significant (p < 0.01). Figure 2e–h shows
the probability distributions, the median, and 95th percentile

values of the relative anthropogenic index (RAI, see methods for
details), which are calculated from all the resampled Gini-
coefficients. There is an increase in RAI for PRCPTOT (0.012), SDII
(0.015), R95p (0.007), and RX5day (0.004), suggesting much
higher temporal variability due to anthropogenic contributions
over China during the period 1961–2005. However, Fig. 2b also
shows that the fifth percentile values of the RAI (see dashed line)
are less than zero, revealing that the decrease is not statistically
significant in uniformity (i.e., increase in unevenness or disparity)
of PRCPTOT, SDII, R95p and RX5day by 1.2, 1.5, 7, and 4%,
respectively due to anthropogenic forcings.
Except for R95p in the NEC region, the median averaged Gini-

coefficient of ALL scenario was greater than the value of the NAT
scenario for all precipitation indices in eight regions (Fig. 2i–l),
indicating human contribution to potential changes in temporal
precipitation variability over China. A similar distribution has been
found in PRCPTOT, SDII, and R95p in eight regions; of them, NWC
has the highest values of the median averaged Gini-coefficient,
followed by NC and NEC, revealing that a relatively higher
temporal precipitation variability for PRCPTOT, SDII, and R95p in
these regions. For RX5day, NC has the highest values of the
median averaged Gini-coefficient, followed by NWC, NEC, and SC,
revealing a relatively higher temporal precipitation variability for
RX5day in these regions. Figure 2i–l also indicates that SWC1 has
the lowest values of the median averaged Gini-coefficient for both
ALL and NAT scenarios, illustrating a relatively lower temporal
precipitation variability for all four precipitation indices in Qinghai-
Tibet regions. Generally, regardless of CMIP5 ALL or NAT scenarios,
the resampled averaged Gini-coefficients of northern China (NWC,
NC, and NEC) are higher than that of southern China. The possible
reasons for this phenomenon are first because there are less
precipitation frequency and precipitation amounts in northern
China than in southern China, and secondly, because there are
more rainy months in southern China than in northern China38,39.
All these reasons generally make the precipitation distribution in
southern China relatively even.
Figure 3 indicates the best RAI estimates in eight regions of

China along with their uncertainty range at 95 and 5% limits
(maximum and minimum values), which reveals that generally, the
best RAI estimates in southern China is higher than in the north,
suggesting the higher anthropogenic influence on the variability
of four precipitation indices in southern China. The influence is
generally reflected by the changes in severe weather phenomena
(e.g., Meiyu rainband, tropical cyclones). For example, the increase
of tropical cyclones (TCs) contributes significantly to an upward
trend of rainfall intensity in summer and autumn in southern
China40, and an increasing trend in SDII, R95p, and RX5day over
southeastern China and the Meiyu rainband, suggesting that
extreme precipitation rates will be likely to enhance in future41.
Among all eight regions, the SWC2 region exhibits the highest
anthropogenic influence on the variability of PRCPTOT, SDII, R95p,
and RX5day, the best RAI estimates of which are 0.0674, 0.0546,
0.0424, and 0.0404, respectively. Meanwhile, based on the value of
the 5% limit, there is a statistically significant (95% confidence)
increase in nonuniformity of PRCPTOT, SDII, and RX5day by 6.74,
5.46, and 4.04% respectively in the SWC2 region due to
anthropogenic forcing. The finding could be used to explain
why there were more severe precipitation anomalies (e.g., extreme
dry events) in Yunnan province in recent years42. Also, the NWC
region has the lowest best RAI estimates for PRCPTOT, SDII, R95p,
and RX5day, suggesting a statistically insignificant decrease in
nonuniformity of PRCPTOT, SDII, R95p, and RX5day by 8.37, 1.80,
1.04, and 2.17% due to anthropogenic forcing. This is consistent
with the results obtained from a study43 that discovered a
decrease in the temporal inequality of precipitation in arid regions
of China with the increase in air temperature. Under global
warming, heavy precipitation amount dominated by the
frequency-enhanced rainstorms increased gradually in the
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Fig. 1 Comparison of Gini-coefficients between observed and simulated values. Gini-coefficients at spatial distributions of a CN05 dataset,
b CMIP5 historical simulations, c CMIP6 historical simulations, d the bias [(CMIP5-CN05)/CN05] (%), e the bias [(CMIP6-CN05)/CN05] (%),
f histogram and density plots of the bias [(CMIP5-CN05)/CN05] (%), and g histogram and density plots of the bias [(CMIP6-CN05)/CN05] (%)for
four indices from 1961 to 2005. Red lines are the average value for all grids. The subfigures were done in the software R 4.0.2 (https://cran.r-
project.org/bin/windows/), and then the subfigures were merged by using the Microsoft PowerPoint 2013 software (https://www.microsoft.
com/).
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northern and inner parts of China44, possibly reflecting the
decrease in RAI estimates in NWC.

Temporal variability of precipitation in future
The distributions of the Gini-coefficient of historical simulations
(1961–2005) and CMIP6 future simulations (SSP126, SSP370, and
SSP585 from 2051 to 2095) for four precipitation indices are
illustrated in Fig. 4 and show that future simulations have similar
distributions like historical simulations over China, suggesting that
the values in northern China are generally higher than that in
southern regions. These distributions also reflect more precipita-
tion amounts and frequency in the south than that in the north.
The largest Gini-coefficient of PRCPTOT for three future scenarios
are detected in Xinjiang and Inner Mongolia Provinces, up to 0.25,
while the lowest Gini-coefficient is found in the southwestern
region, close to zero. Figure 4a also indicates that a negative
change is found in NWC (especially in Xinjiang Province) and
northern SWC1, while a positive change in southwestern and
central regions for all three scenarios, and the change ranges from
−20 to 30%. PRCPTOT projections under SSP370 are almost
equivalent to the projections under SSP585, with a positive
change in small regions of southwestern China. Similar to
PRCPTOT, SDII has a positive change in Xinjiang Province and a
positive change in southwestern and northeastern regions under
all three scenarios, with a range from −30 to 40%.
The largest Gini-coefficient for R95p and RX5day is up to 0.60

and 0.25, respectively, which are detected in the southern flank
of northwest China (Fig. 4c, d). Meanwhile, Fig. 4c also indicates
that the Gini-coefficient of R95p projections under all three
SSPs is less than those in historical simulations in most regions
of China, especially in the northwest region, which is similar to
the comparison between CMIP5 ALL and NAT simulations in
Fig. 3. Due to the semi-arid and arid climate, the annual
precipitation in Northwest China is less than 200 mm with an
increasing trend in extreme precipitation events since 196144,
possibly reflecting the decrease in Gini estimates across this
region in the future. In contrast, most of the regions in China
show a positive bias for RX5day under all three scenarios, and
the largest bias is detected in the Qinghai-Tibet region, up to
60% (Fig. 4d). Also, Fig. 4d shows that RX5day projections under
SSP585 are almost equivalent to the projections in most regions
of China under SSP370.
Except for R95p, a positive shift has been detected for the other

three precipitation indices under three scenarios, suggesting
an increase in Gini-coefficients under future SSP370 and
SSP585 simulations (Fig. 5). Moreover, under the SSP585 scenario,
the value of the median value over China increases to 0.113, 0.075,

and 0.158 for PRCPTOT, SDII, and RX5day, respectively (Table 2). In
contrast, the value of the median Gini-coefficient for R95p decreases
from 0.278 to 0.248, 0.241, and 0.241 for SSP126, SSP370, and
SSP585 scenarios, respectively. These results indicate that there will
likely be more and more precipitation events, contributing to the
temporal inequality (i.e., an increase in unevenness or disparity).
Figure 5e–h show the probability distributions, the median, and
95th percentile values (or fifth percentile values) of the relative
future index (RFI, see methods for details) for three future scenarios,
which indicates that there is an increase in RFI for PRCPTOT, SDII,
and RX5day under three future scenarios, with the exception of
R95p. Furthermore, a statistically significant increase in RFI is found
for SDII, and RX5day for both SSP370 and SSP585 scenarios, the
value of which are 0.052 and 0.070 and 0.036 and 0.054,
respectively. The results show much higher temporal variability in
daily intensity index and max 5-day precipitation amount due to
increasing anthropogenic forcings under SSP370 and
SSP585 scenarios in the future over China, and the corresponding
rate of change are 5.2 and 7% and 3.6 and 5.4%, respectively. On the
contrary, a statistically significant decrease in RFI is found for R95p
under SSP126, SSP370, and SSP585 scenarios, suggesting a lower
temporal variability due to increasing anthropogenic forcings in the
future over China, with the corresponding rate of change at −13.2,
−15.9, and −15.6%, respectively.
The resampled averaged Gini-coefficients of four precipitation

indices have similar characteristics in eight regions for PRCPTOT,
SDII, and RX5day (Fig. 6). Of them, except for NWC, NC, and NEC,
the Gini-coefficients of these three precipitation indices are all
projected to increase in the 21st century, suggesting an increasing
trend in temporal precipitation variability in the future. For R95p,
generally, historical simulations have higher median Gini-
coefficients than those in future simulations in most regions with
the exception of SC and SWC2. Also, whether it is historical or
future simulations, R95p has the highest median Gini-coefficients
in eight regions, followed by RX5day, PRCPTOT, and SDII, which
indicates the largest temporal inequality in R95p in the future.
Moreover, NWC has the highest median Gini-coefficients of R95p
for SSP126, SSP370, and SSP585 simulations, with the correspond-
ing value at 0.310, 0.285, and 0.285, respectively (Table 2),
illustrating that a relatively higher temporal precipitation varia-
bility for R95p in future.
Figure 7 shows the best RFI estimates in eight regions of China

along with their uncertainty range at 95 and 5% limits (maximum
and minimum values) for future simulations, which reveals that
generally, the best RFI estimate in the south of China is higher
than the north for precipitation indices, suggesting the higher
anthropogenic influence on the temporal variability in southern
China. Overall, projections of PRCPTOT, SDII, and RX5day have

Table 1. Univariate statistics of the Gini-coefficient of the observed and historical simulated precipitation extreme indices from 1961 to 2005.

Data Indices Mean SD Maximum Minimum Skewness Kurtosis

CN05 PRCPTOT 0.13 0.06 0.35 0.05 1.66 2.7

SDII 0.09 0.03 0.27 0.04 1.84 3.91

R95p 0.34 0.13 0.82 0.16 1.52 1.80

RX5day 0.17 0.05 0.35 0.07 0.83 0.74

CMIP5 PRCPTOT 0.10 0.04 0.22 0.04 1.26 1.49

SDII 0.06 0.02 0.14 0.03 1.11 1.53

R95p 0.27 0.08 0.57 0.24 1.68 2.56

RX5day 0.14 0.03 0.26 0.06 0.37 0.56

CMIP6 PRCPTOT 0.11 0.04 0.27 0.05 1.18 1.44

SDII 0.07 0.02 0.17 0.04 1.36 1.84

R95p 0.28 0.08 0.63 0.16 1.54 2.54

RX5day 0.15 0.03 0.25 0.08 0.72 −0.18
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similar features in eight regions, showing a stepped upward
trend in most regions between SSP126, SSP370, and
SSP585 simulations. For PRCPTOT projections, the best RFI is
greater than zero in most regions under SSP370 and
SSP585 scenarios, while less than zero in most regions under
the SSP126 scenario. Of them, the best RFI value in CC, EC, SC,
SWC1, and SWC2 regions indicate a statistically significant (95%
confidence) change under both SSP370 and SSP585 simulations,
which suggests that the temporal variability of annual precipita-
tion is likely to increase due to anthropogenic forcing by 5.0 and
8.1% in CC, 4.7 and 6.2% in EC, 8.7 and 8.5% in SC, 3.1 and 6.6% in
SWC1, and 13.1 and 14.6% in SWC2. And no matter what emission
scenario exists, the RFI values for NWC and NC are less than zero
for PRCPTOT, with a statistically significant decrease in temporal
variability for all three future simulations.

The best RFI estimates for SDII are significantly greater than zero
in SC, SWC1, and SWC2 for all three future scenarios (Fig. 7c, d),
suggesting a significant increase in temporal variability in the
averaged wet day daily amount (SDII) in these regions. Under
SSP585, the largest best RFI is found in SWC2 (0.201), followed by
SC (0.161) and SWC1 (0.135), which indicate that there is a
statistically significant (95% confidence) increase in nonuniformity
of SDII by 20.1% in SWC2, 16.1% in CC, and 13.5% in SC. Similar to
PRCPTOT, the RFI value in NWC is significantly less than zero for
SDII for all three future scenarios, suggesting a statistically
significant (95% confidence) decrease in nonuniformity of SDII
by 6.0%, 6.0, and 3.3% for SSP126, SSP370, and SSP585 scenarios,
respectively in this region.
Similarly, exception of NC and NWC, the best RFI estimates for

RX5day are significantly greater than zero over China under

Fig. 2 Maps of the resampled averaged Gini-coefficients and RAI. a–d The probability distribution functions of the resampled averaged
Gini-coefficients for four precipitation extreme indices over China for CMIP5 ALL and NAT scenarios obtained by the bootstrapping procedure
and the dashed line indicates the median (best estimate) value of Gini-coefficients. e–h The probability distribution functions of RAI values
over China, and the solid red line indicates the median (best estimate) value of RAI, and the dashed line indicates the fifth percentile value; the
i–l subfigures are the boxplots of the resampled averaged Gini-coefficients for eight subregions. The subfigures were done in the software R
4.0.2 (https://cran.r-project.org/bin/windows/) and then the subfigures were merged by using the Microsoft PowerPoint 2013 software
(https://www.microsoft.com/).
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Fig. 3 Maps of the RAI estimates. a–d The best temporal RAI estimates over eight regions in China for PRCPTOT (mm/year), SDII (mm/day),
R95p (mm), and RX5day (mm) respectively. e–h The uncertainty range (5th to 95th percentile) of RAI and the horizontal line in the box
represents the best estimate (i.e., median value). The subfigures were done in the software R 4.0.2 (https://cran.r-project.org/bin/windows/),
and then the subfigures were merged by using the Microsoft PowerPoint 2013 software (https://www.microsoft.com/).

Fig. 4 Comparison of Gini-coefficients between historical and future simulations. Comparison between historical simulations (1961–2005)
and future simulations (SSP126, SSP370, and SSP585, from 2051 to 2095) Gini-coefficients for a PRCPTOT, b SDII, c R95p, and d RX5day. The
subfigures were done in the software R 4.0.2 (https://cran.r-project.org/bin/windows/), and then the subfigures were merged by using the
Microsoft PowerPoint 2013 software (https://www.microsoft.com/).
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SSP370 and SSP585 scenarios (Fig. 7), suggesting a significant
increase in temporal variability in the annual maximum 5-day
precipitation (RX5day) in these regions. Under the
SSP585 scenario, the largest best RFI is found in SC (0.120),
followed by SWC2 (0.119) and CC (0.114), which indicate that
there is a statistically significant increase in nonuniformity of
RX5day by 12.0% in SC, 11.9% in SWC2, and 11.4% in CC. On the
contrary, the best RFI estimates for RX5day are significantly less
than zero in NC and NWC for all three future scenarios (Fig. 7),
suggesting a significant decrease in temporal variability in the
averaged wet day daily amount (SDII). Of them, the lowest best

RFI is found for the SSP126 scenario in NC (−0.047), which
indicates that there is a statistically significant decrease in
nonuniformity of RX5day by 4.7% in NC under a very low forcing
level. Except for SC and SWC2 under SSP370 and
SSP585 scenarios, the best RFI estimates for R95p are significantly
less than zero over China in the future (Fig. 7), indicating a
significant decrease in temporal variability of the annual total
precipitation on very wet days (R95p) in future. Of them, the
smallest best RFI was found in NWC under the SSP370 scenario,
the value of which is up to −0.295, suggesting a statistically
significant decrease in nonuniformity of R95p by 29.5%.

Fig. 5 Maps of the resampled averaged and median (best estimate) Gini-coefficients. The figure on the top panel represents the probability
distribution functions of the resampled averaged Gini-coefficients for a PRCPTOT, b SDII, c R95p, and d RX5day over China for historical
simulations (1961–2005) and future simulations (SSP126, SSP370, and SSP585, from 2051 to 2095), and the dashed line indicates the median
(best estimate) value of Gini-coefficients. The bottom panel indicates the probability distribution functions of RFI values for e PRCPTOT, f SDII,
g R95p, and h RX5day over China as obtained from utilizing the CMIP6 historical and future simulations from the top panels, and the solid
straight line indicates the median (best estimate) value of RFI and the dashed line straight indicates the 95th percentile value or 5th percentile
value. The subfigures were done in the software R 4.0.2 (https://cran.r-project.org/bin/windows/), and then the subfigures were merged by
using the Microsoft PowerPoint 2013 software (https://www.microsoft.com/).

Table 2. Medium values of Gini in eight subregions and the whole of China for historical and future simulations.

Regions Scenarios NEC NC EC CC SC SWC1 SWC2 NWC China

PRCPTOT His 0.100 0.132 0.088 0.087 0.080 0.097 0.080 0.148 0.110

SSP126 0.095 0.124 0.087 0.086 0.081 0.096 0.083 0.137 0.106

SSP370 0.101 0.127 0.094 0.093 0.089 0.101 0.094 0.136 0.110

SSP585 0.101 0.129 0.095 0.095 0.089 0.105 0.096 0.141 0.113

SDII His 0.070 0.092 0.059 0.061 0.057 0.058 0.061 0.084 0.069

SSP126 0.069 0.090 0.060 0.061 0.060 0.060 0.066 0.079 0.069

SSP370 0.075 0.094 0.067 0.067 0.069 0.066 0.077 0.078 0.073

SSP585 0.075 0.095 0.068 0.068 0.070 0.068 0.079 0.080 0.075

R95p His 0.261 0.312 0.217 0.218 0.221 0.250 0.215 0.363 0.278

SSP126 0.238 0.278 0.200 0.204 0.212 0.222 0.205 0.310 0.248

SSP370 0.235 0.267 0.202 0.208 0.224 0.219 0.217 0.285 0.241

SSP585 0.235 0.267 0.203 0.208 0.222 0.220 0.217 0.285 0.241

RX5day His 0.158 0.193 0.122 0.131 0.140 0.121 0.129 0.169 0.148

SSP126 0.156 0.186 0.126 0.139 0.145 0.125 0.131 0.165 0.148

SSP370 0.166 0.189 0.134 0.148 0.160 0.134 0.146 0.165 0.155

SSP585 0.169 0.192 0.138 0.152 0.163 0.137 0.147 0.169 0.158

W. Duan et al.

7

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2022)    33 

https://cran.r-project.org/bin/windows/
https://www.microsoft.com/


DISCUSSION
Both CMIP5 and CMIP6 simulations underestimate the Gini-
coefficients in most regions of China, especially in Northwest
China, where there are sparse meteorological stations. This kind of
underestimation has been also found by Konapala et al.24, which
may reflect the general weakness of rainfall prediction in GCM
simulations because the topography is the main influencing factor
that force precipitation patterns37. Another reason is that the
accuracy of the observed CN05 data were also affected by the
number of meteorological observation station in different regions,
the bias of which could be large in these regions with sparse
stations. However, results from the evaluation of temporal
variation of the present-day simulations for CMIP5 and CMIP6
historical simulations can generally capture the magnitudes and
spatial patterns of temporal variations for RCPTOT, SDII, R95p, and
RX5day, which are consistent with the results of previous
studies36,45. Moreover, CMIP6 generally performs better than
CMIP5 in historical simulations of precipitation extremes.
A clear signal indicating a positive anthropogenic influence on

the temporal variability of PRCPTOT, SDII, R95p, and RX5day over
China by comparing CMIP5 ALL and NAT simulations, suggesting
an increase in nonuniformity (i.e., decrease in unevenness) in
annual precipitation amount and intensity. The result is consistent
with the finding of Li et al.33, and they argued that anthropogenic
forcings are likely to partially drive the intensification of extreme
precipitation over China. Meanwhile, it is very difficult to clearly
recognize the anthropogenic aerosol effect in current models, and
both aerosol–cloud interactions and aerosol–radiation interactions
can influence extreme precipitation over China46. Compared to

northern China, a higher anthropogenic influence on the
variability was found for four precipitation indices in southern
China, which is consistent with the findings of previous studies
(e.g., Sun et al.43) that documented an increased contribution to
the overall precipitation amount from extreme events and higher
temporal inequality of precipitation in southeastern China with
global warming, but a decrease in the temporal inequality of
precipitation in northern China, especially in arid regions. The
possible reason for this phenomenon is that both precipitation
frequency and precipitation amounts in arid regions are inherently
scarce. Within a certain range, an increase in precipitation
frequency will improve the uniformity (i.e., decrease in uneven-
ness) in annual precipitation amount and intensity, but at the
same time, it will increase the risk of precipitation extremes (i.e.,
the increase of RX5day).
In addition, why the SWC2 region exhibits the highest

anthropogenic influence on the temporal variability of PRCPTOT,
SDII, R95p, and RX5day? SWC2 region mainly contains the Yunnan
Province, which is a sensitive region for climate change due to its
geographic and ecological background, and is strongly influenced
by the South Asian monsoon (SAM), East Asian monsoon (EAM),
and air masses from the Qinghai-Tibet Plateau47. With global
warming, the index of EAM and SAM has been confirmed to
decrease in the recent decades, and its fluctuation is becoming
more frequent, which contributed to severe precipitation anoma-
lies42,48, increasing the probability of concurrent extreme wet and
dry events for Yunnan49.
Also, in the past decades, human activities, such as burning

fossil fuels, have significantly contributed to global warming,
which probably affects the atmospheric circulation, eventually

Fig. 6 Boxplots of the resampled averaged Gini-coefficients in eight regions. Boxplots for a PRCPTOT, b SDII, c R95p, and d RX5day for eight
regions in China for CMIP6 for historical simulations (1961–2005) and future simulations (SSP126, SSP370, and SSP585, from 2051 to 2095)
obtained by the bootstrapping procedure. The subfigures were done in the software R 4.0.2 (https://cran.r-project.org/bin/windows/), and
then the subfigures were merged by using the Microsoft PowerPoint 2013 software (https://www.microsoft.com/).
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causing temporal variability of precipitation (i.e., increase of
precipitation extremes)50,51. To investigate the characteristics of
the temporal variability of precipitation in China, the composite
analysis was performed based on the following atmospheric
variables in the data of the NCEP/NCAR Reanalysis 1: air
temperature, geopotential height, and wind at 500 hPa, and
specific humidity from 300 to 1000 hPa. Generally, an increasing
trend in the air temperature and geopotential height at 500 hPa
was found over China, especially in northwestern regions (Fig. 8a,
b). The increasing trend in temperature plays a role in holding
more water vapor, probably increasing the risk of extreme
precipitation events52,53. An increasing trend in specific humidity
was detected in most regions of western China (e.g., northern
Xinjiang and Tibet), which may contribute to wetter in these
regions54,55. Also, an anomalous anticyclonic circulation was found
over Mongolia and northern China (Fig. 8d) in the later period
(1991–2018), which probably favored the divergence of water
vapor (Fig. 8d shows that the increasing westerly winds (about
2 m s−1) brought more water vapor from the Atlantic Ocean and
the increasing easterly winds brought more water vapor from the
Sea of Okhotsk and the western Pacific) under an increasing
humidity (Fig. 8c) and increased the frequency of precipitation
extremes in these regions. Generally, climate warming induced by
anthropogenic forcing under CMIP5 ALL simulations has been
proved to significantly affect both thermodynamic and dynamic
mechanisms, and eventually change the atmospheric circulation56.
For the future atmospheric circulation changes under global
warming, Chen57 indicated that the East Asian summer monsoon
circulation has been projected to be considerably stronger, and

the local atmospheric stratification has been projected to be more
unstable, all of which provide a background benefit for the
increase of extreme precipitation events in China.
Finally, why R95p has a significant decrease in temporal

variability in most regions of China under SSP126, SSP370, and
SSP585 simulations? Some previous studies27,36 have already
demonstrated that human-induced increases in greenhouse
gases will possibly contribute to the heavy precipitation
events (i.e., more flooding) over China, especially under
the SSP585 scenario. The value of R95p could be increased in
the future36, but its temporal variability may get weaker in the
future than in the historical simulations in northwestern China. It
may be because the percentage increase in R95p is larger than
that of PRCPTOT, which indicates that an increase in precipitation
falling on very wet days has a larger contribution to the total
precipitation change36, and this appropriate increase in frequency
will tend to cause a uniform distribution for R95p in future. In this
study, the Gini-coefficients of R95p in northern China (especially
in Xinjiang Province) are much higher than those in the
southwestern region, and future Gini-coefficients are basically
less than the historical ones in these regions. Of course, although
the CMIP5 and CMIP6 GCMs provide a powerful tool to evaluate
impacts from anthropogenic forcings on precipitation extremes
and predicate temporal variability of precipitation extremes in the
future, further work is needed to more precisely quantify the
fraction of risk attributable to anthropogenic and natural factors
at the regional scale, especially in these regions with sparse
meteorological stations.

Fig. 7 Maps of the best temporal RFI estimates. The best temporal RFI estimates were calculated based on the bootstrapping procedure for
a PRCPTOT, c SDII, e R95p, and g RX5day over eight regions in China. b, d, f, h The uncertainty range (5th to 95th percentile) of RFI and the
horizontal line in the box represents the best estimate (i.e., median value). The subfigures were done in the software R 4.0.2 (https://cran.r-
project.org/bin/windows/) and then the subfigures were merged by using the Microsoft PowerPoint 2013 software (https://www.microsoft.
com/).
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To conclude, based on the Gini-coefficients, this study has
investigated the impacts of anthropogenic forcings on the
temporal variability of annual precipitation extremes in China.
The major findings of this study are summarized as follows: (1)
although CMIPs simulations underestimate the Gini-coefficients in
some regions of China, the overall magnitudes and spatial
patterns of temporal variations for precipitation extremes are
reasonably well characterized by a better performance of CMIP6;
(2) a positive anthropogenic influence on the temporal variability
of precipitation extremes has been clearly detected in China
during the period 1961–2005; and (3) future projections of
precipitation extremes (except for R95p) have a stepped upward
trend over China, especially in southern China. Because precipita-
tion extremes have significant implications for the net primary
production of terrestrial ecosystems and agricultural yields, results
obtained from this study not only offer insights into the temporal
variability of precipitation extremes but also help policy makers for
managing water-related disasters. For example, detailed dam
management strategies could be improved for drought mitigation
in southwest China.

METHODS
GCM datasets
In this study, we use two sets of simulations (one historical experiment and
one historicalNat experiment) of 15 CMIP5 GCMs (Table S1) and four sets of
simulations (one historical experiment and three future emission scenarios)
of 20 CMIP6 GCMs (Supplementary Table 2). In general, the historical
experiment has been forced by observed atmospheric composition
changes (reflecting both anthropogenic and natural sources) and the

time-evolving land cover58. While the historicalNat experiment is run only
with the time-dependent natural forcing (solar and volcanic aerosols),
hence providing estimates of the Earth’s climate without anthropogenic
influences58. The future emission scenarios are the socioeconomic
pathways (shared socioeconomic pathways, SSPs) in CMIP6, which contain
SSP126 (sustainability), SSP370 (regional rivalry), and SSP585 (fossil-fueled
development)59, generally corresponding to the representative concentra-
tion pathways (RCPs) 2.6, 6.0, and 8.5 in CMIP560. In this study, after
evaluating the performance of temporal variability of precipitation
extremes for both CMIP5 and CMIP6 historical simulations, we explored
the impact of anthropogenic forcings on extreme precipitation temporal
variability of precipitation based on CMIP5 simulations. Finally, the future
change has been evaluated based on the CMIP6 simulations. In order to
better compare with observed data, the time period of historical and
historicalNat simulations are selected from 1961 to 2005, and the time
period of future simulations are selected from 2050 to 2095.

Observed dataset
In order to compare with the historical simulations, observed daily
precipitation data from 1961 to 2005 for China are utilized, which has been
produced by the National Climate Center, China Meteorological Admin-
istration61, on the basis of 2416 weather monitoring stations (hereafter
referred to as CN05, see Fig. S1). Figure S1 shows that the total number of
stations decreases steadily from east to the west and from south to the
north, especially is very scarce in Northwest China (NWC) and Southwest
China-region 1 (SWC1). The CN05 grid dataset has been constructed by
using the method of “anomaly approach” based on the gridded daily
anomaly and the gridded climatology62, the resolution of which is 0.5° ×
0.5°. The CN05 dataset has been successfully applied to evaluate detailed
changes in regional climate change in China and validate high-resolution
climate model38,61.

Fig. 8 Maps of changes in the atmospheric variables. Spatial distribution of the decadal trend of a air temperature and b geopotential
height at 500 hPa from 1960 to 2018. c Spatial distribution of the yearly trend of specific humidity for 300–1000 hPa from 1960 to 2018. d The
anomalies in wind at 500 hPa between the period 1991–2018 and 1960–1990. Areas with red dots indicate 95% significance. The subfigures
were done in the software R 4.0.2 (https://cran.r-project.org/bin/windows/) and then the subfigures were merged by using the Microsoft
PowerPoint 2013 software (https://www.microsoft.com/).
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Computation of climate indices and data processing
Based on the Gini-coefficient, we have presented an analysis of impacts
from anthropogenic forcing to the temporal variability of precipitation
amounts (PRCPTOT), intensity (SDII) and extremes (R95p and RX5day), and
investigate future changes in temporal precipitation variability under three
scenarios over China. Four climate indices including PRCPTOT, SDII, R95p,
and RX5day (Supplementary Table 4) have been selected and computed
on an annual basis for observation data, historical climate simulations,
historicalNat climate simulations, and future climate simulations to analyze
and estimate the anthropogenic contribution to the temporal variability of
precipitation in China. These indices were developed by the “Expert Team
on Climate Change Detection and Indices” (ETCCDI) (available at http://
etccdi.pacificclimate.org/)63 and have been widely used to improve a
constant perspective on changes in climate and weather extremes45,64.
PRCPTOT is defined as the total amount of precipitation on wet days (days
with precipitation >1mm). SDII is the annual precipitation intensity. R95p
is a percentile-based index, which quantifies the exceedance rates over
the 95th percentile derived from the reference period. RX5day is an
absolute index and represents the maximum consecutive 5-day precipita-
tion amount.
Due to different resolutions between CMIP (CMIP5 and CMIP6) and CN05

data, the performance of the CMIP5 and CMIP6 models in simulating those
precipitation extremes was evaluated in China based on the resolution at
1° × 1°, and found that the CMIP5 and CMIP6 models are generally able to
simulate precipitation extremes over China. Following their approach, a
first-order conservative remapping procedure65 has been applied to regrid
the precipitation indices to a common grid of resolution 1° latitude × 1°
longitude for China by using Climate Data Operators (https://code.mpimet.
mpg.de/projects/cdo/). In order to fully elaborate on regional changes, we
have divided China into eight regions including Northeast China (NEC),
Northern China (NC), Eastern China (EC), Central China (CC), Southern
China (SC), Southwest China-region 1 (SWC1), Southwest China-region 2
(SWC2), and Northwest China (NWC), according to administrative
boundaries and societal and geographical conditions66. Of them, NEC
has a temperate continental monsoon climate with distinct seasons, NWC
mainly contains Xinjiang and Gansu provinces and has a semi-arid and arid
climate, SWC1 mainly contains the Tibetan plateau with a higher elevation
(generally >3000m), and SWC2 mainly contains Yunnan province and is
affected by both the Indian monsoon, the East Asian monsoon.

Gini-coefficient
The Gini-coefficient (G) is a well-established method for evaluating equity
of resource allocation, mostly known for its use in measuring inequality of
income or wealth in economics, but also recently and frequently used to
measure the inequalities of changes of hydrometeorological elements
(e.g., discharges, precipitation, and so on) under climate change and
human activities24,43,67,68. Therefore, G has been used to depict the human
contribution to potential changes in temporal precipitation variability (i.e.,
increase in unevenness or disparity) and quantify the inequality in the
annual temporal distribution of future precipitation extremes in China. The
precipitation index (PRCPTOT, SDII, P95p, and RX5day) has been calculated
for each year, sorted by ascending order, summed cumulatively, and then
converted into a proportion of time expressed by Pi(i= 1,… ,n) with n= 5.
The value of G can be calculated by doubling the area between the Lorenz
curve and the absolute equality line (1:1 line) (Supplementary Fig. 2), which
can be mathematically described as

G ¼ 1
n

nþ 1� 2 �
Pn

i¼1 nþ 1� ið Þ � PiPn
i¼1 Pi

� �� �

(1)

The value of G theoretically ranges from 0 to 1. G= 0 indicates a uniform
distribution of the precipitation index throughout the years, which means
that all values are the same; while G= 1 represents maximal nonuniformity
or the largest disparity distribution of precipitation throughout the years,
which may suggest the annual precipitation index occurs in a single year
during the entire study period. In general, smaller values of the Gini-
coefficient imply more equality in the temporal variation of the
precipitation indices, and vice versa.
By calculation, there is a single value of Gini-coefficient for each grid in

CMIP5, CMIP6, and CN05 datasets. For the regional Gini-coefficient, we
have computed the average value of the gridded Gini-coefficients over the
specified regions. Therefore, each region has a single value of Gini-
coefficient for each CMIP5 and CMIP6 realization separately for the
historical, historicalNat, and future emission scenarios. Then, to examine

the performance in temporal variability of CMIP5 and CMIP6 GCMs’
precipitation simulations in China, we have first compared the Gini-
coefficient of the observed and simulated PRCPTOT, SDII, R95p, and
RX5day for the period 1961–2005.

Detection and attribution
Climate models have become the most powerful tool not only for
predicting climate change but also for fully understanding it, which have
been also widely utilized in the analysis of extreme events based on
different model experiments with different forcing combinations12.
Climate models could be conducted with and without anthropogenic
influences in order to quantify the extent of anthropogenic or natural
influences for climate change or extreme events. Based on the Gini-
coefficient, likewise, Konapala et al.24 has defined a relative anthropogenic
index (RAI) to evaluate the relative difference between historical and
HistoricalNat simulations, which is applied in this study. The value of RAI
can be calculated as

RAI ¼ GALL � GNAT

GALL
¼ 1� GNAT

GALL
(2)

where GALL is the Gini-coefficient of the anthropogenic plus natural forcing
(ALL) historical precipitation simulations, and GNAT represents the Gini-
coefficient of natural forcing only (NAT) historical precipitation simulations.
A positive value of RAI means an increase in annual precipitation variability
during the study time period, whereas a negative value of RAI represents a
decrease in annual precipitation variability during the study time period
due to anthropogenic forcing. For each region, the regional Gini-coefficient
has been used to calculate the RAI by Eq. (2) by using the multi-model
ensemble means of CMIP5 historical simulations.
Similarly, we have defined a relative future index (RFI) to evaluate the

relative difference between historical and future simulations, which can be
mathematically described as

RFI ¼ GFuture � GHistorical

GFuture
¼ 1� GHistorical

GFuture
(3)

where GFuture represents the Gini-coefficient of the CMIP6 future
precipitation simulations (SSP126, SSP370, and SSP585), and GHistorical

equals GALL in this study, representing the Gini-coefficient of the
anthropogenic plus natural forcing (ALL) historical precipitation simula-
tions. For each region, the regional Gini-coefficient has been used to
calculate the RFI by Eq. (3) by using the multi-model ensemble means of
CMIP6 future simulations.
In order to estimate the uncertainty of the Gini-coefficients and RAI (RFI),

the Bootstrapping resampling procedure69 has been used to generate
10,000 subsamples from the 41 CMIP5 realizations and 85 CMIP6
realizations. Then the percentile bootstrap method70 was applied to
calculate the endpoints for 5 or 95% bootstrap confidence interval, which
means the fifth percentile and 95th percentile RAI (RFI) values. Therefore,
the distribution of 10,000 RAI (RFI) values represents the uncertainty
associated with using different models and provides a basis for
communicating RAI (RFI) ranges. Also, a positive RAI (RFI) median is
statistically significant if its fifth percentile value is also positive, while a
negative RAI (RFI) median is statistically significant if its 95th percentile
value is also negative71–73. Hence, the RAI estimates the influence of
anthropogenic forcings on the temporal variation along with its
significance, and the RFI estimates future changes on the temporal
variation along with its significance.

DATA AVAILABILITY
All the precipitation extreme indices from CMIP5 simulations are downloaded online
(at http://www.cccma.ec.gc.ca/data/climdex/index.shtml, accessed March 2020). The
CN05 grid dataset was downloaded from http://data.cma.cn/. All the
CMIP6 simulations are downloaded online (at https://esgf-node.llnl.gov/). The CN05
grid dataset was downloaded from http://data.cma.cn/. The NCEP Reanalysis data
were downloaded from the NOAA/OAR/ESRL PSD (https://psl.noaa.gov/).

CODE AVAILABILITY
The R code used to run the analysis can be obtained upon request from the
corresponding author.
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