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Fig. 10: Average changes in the producer prices of crops under the RCP2.6 and RCP6.0 scenarios by the end-
21st century (2071-2100). The changes are relative to the reference scenarios, which are simulated by GRACE 

based on SSPs. The price responses are averaged over GCMs, crop models, and heat assessment metrics. 
Different ranges for production changes are applied on the y-axis. 

At the global scale, even under RCP2.6, the heat-induced impacts on worker productivity could 
offset the benefit of enhanced yields, thereby leading to economic losses (Fig. 12). Developing 
countries are growing faster (i.e., the catch-up effect) and therefore, their relative contribution 
to global GDP increases over time, depending on the SSP scenario. Thus, global economy 
becomes more vulnerable to adverse climate impacts in the regions, such as Africa. Under 
RCP6.0, there are reductions in global GDP for many simulations, especially when using the 
climate projections from HadGEM2-ES. When using the climate data from GDFL-ESM2M or 
MIROC5, less pronounced reductions in global GDP are observed because these two climate 
models have almost half of the equilibrium climate sensitivity of HadGEM2-ES (Andrews et 
al., 2012). This highlights the relevance of the transient climate response uncertainty. A higher 
(lower) climate sensitivity implies more (less) warming for the same CO2 trajectory (i.e., a more 
(less) pronounced negative impact of warming on worker productivity compared to a positive 
effect of CO2 fertilisation). 
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Regarding the uncertainty attribution, for each RCP, when the heat stress impacts on workers 
are introduced, the largest source of uncertainties comes from GCMs, especially for the second 
half of the century (Fig. S3.1.4). It should be noted that when pooling the results, the scenario 
uncertainty (i.e., RCP) emerge as the largest source of uncertainty for heat stress impacts by the 
end-21st century. The choice of heat assessment metric substantially affects the cost of heat 
stress (Orlov et al., 2020). Both the Hothaps function and ISO/NIOSH standards are used for 
the core simulation runs. When using the ISO/NIOSH standards, the cost of heat stress is 
considerably larger due to higher labour productivity losses. In comparison to the Hothaps 
function, the cost estimated using the ISO/NIOSH heat assessment metric should be interpreted 
as the cost of preventing heat-related illness, which implies that all workers would follow these 
cautious recommendations. As empirically estimated region-specific exposure-response 
functions for heat stress are not available, we consider the Hothaps function and ISO/NIOSH 
standards as a lower and upper bound of estimated costs. Moreover, the uncertainties related to 
socioeconomic development pathways depicted by SSPs becomes more relevant compared to 
when only climate-induced impacts on crop yields are implemented. Under SSP4-RCP6.0, for 
the GCM-CropModel combinations with a high equilibrium climate sensitivity, the reduction 
in global GDP is larger than under SSP1. As explained in Section 2.2, we associate SSP1 with 
a faster mechanisation in agriculture, which diminishes the adverse impacts of heat stress. 
Interestingly, for some GCM-CropModel combinations with a low equilibrium climate 
sensitivity, the increases in global GDP under SSP4 could be slightly more pronounced than 
under SSP1. This is because the contribution of agricultural sector in global GDP is higher 
under SSP4 compared to SSP1, so a positive climate-induced impact on crop yields would lead 
to a stronger increase of global GDP.    

 
Fig. 11: Changes in regional GDP under the RCP2.6 and RCP6.0 scenarios by the end-21st century (2071-2100). 

The changes are relative to the reference scenarios, which are simulated by GRACE based on SSPs. Under 
RCP2.6, the economic responses by the mid-21st century are similar to those by the end-21st century.   
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Fig. 12: Changes in global GDP under the RCP2.6 and RCP6.0 scenarios. The changes are relative to the 
reference scenarios, which are simulated by GRACE based on SSPs. The upper panels reveal the annual 

evolution of global GDP, where the solid lines show the mean values and shaded areas capture the uncertainties. 
The lower panels show the impacts on global GDP per model combination (climate model and crop model). In 
the lower panels, the impacts on global GDP are averaged over two metrics (i.e., Hothaps and ISO/NIOSH). 

3.3 Heat-induced impacts on worker productivity in production of all crops 

In the core simulations, for consistency and comparability, we implement the heat stress 
impacts only on workers evolved in the production of four major crops (i.e., maize, wheat, rice, 
and soybeans). However, economic costs could be substantially larger when assuming that 
workers involved in production of other crop types are also affected by heat stress (Fig. 13). On 
that regard, our results are robust and reveal a potential threat to agricultural and food 
production especially in Africa, and South and South-East Asia. 
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Fig. 13: Changes in region GDP due to climate-induced impacts on crop yields and heat-induced impacts on 

worker productivity under the RCP2.6 and RCP6.0 scenarios by the end-21st century. The changes are relative to 
the reference scenarios, which are simulated by GRACE based on SSPs. “Staple crops” implies that the 

biophysical shocks on crop yields and worker productivity are implemented only for four staple crops, which is 
the scenario setting in the core simulations. “All crops” means that heat stress impacts on worker productivity 

are implemented in production of all types of crops.    

4. Conclusions  

Using climate projections from the CMIP5, crop model simulations from the ISIMIP2b, and a 
global multi-sector CGE model, we assess the global economic responses to climate change 
impacts on crop production, including the heat stress impacts on workers. We consider a high 
mitigation (RCP2.6) and a low mitigation (RCP6.0) scenario combined with two different 
socio-economic scenarios (SSP1 and SSP4) reflecting different vulnerabilities of agricultural 
workers to heat stress via their differential implications for mechanisation in this sector. We 
find that under both RCP2.6 and RCP6.0, climate-induced impacts on crop yields could lead to 
an increase in crop production in many regions mainly due to a higher concentration of CO2. 
As a result, many regions and the world as a whole could experience moderate welfare gains. 
For South-East Asia and Africa, the economic impacts are strong but also very uncertain. 
However, the impacts of heat stress on worker productivity could offset the economic benefit 
of increased yields in most regions, and in the regions, such as South and South-East Asia, and 
Africa, it could even lead to substantial economic losses. In other words, the adverse economic 
response to heat stress could be larger than the anticipated positive effect of elevated CO2. When 
comparing the relevance of different types of modelling uncertainties, we find that the largest 
part of uncertainties is attributed to GCMs, followed by crop models, exposure-response 
functions, and socio-economic uncertainties. The uncertainty in the transient climate response 
to cumulative CO2 emissions is especially important. Assuming a higher equilibrium climate 
sensitivity (i.e., more warming for the same CO2 emissions) results in more pronounced welfare 
losses due to heat stress.    
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There are several limitations to this analysis. This study solely considers climate impacts on 
yields for four crops, while other agricultural crops could also be affected by climate change. 
Further work should thus consider other crop types as climate-induced impacts on other crops 
could have potentially equally significant macro-economic implications. Moreover, climate-
induced impacts on crop yields are very uncertain, as indicated by significant differences in the 
results from crop model simulations. In our analysis, we use outputs from only four crop models 
and four global climate models, which are available from the ISIMIP2b, therefore uncertainties 
related to the climate and crop system responses to future greenhouse gas emissions might not 
be fully captured. Incorporating results from other climate and crop model simulations would 
be of added value. Also, the implications of potential shifts in diets, which could significantly 
differ by SSP scenarios, are not explored in this study. Although an autonomous SSP-dependent 
mechanisation as well as endogenous mechanisation via substitution between labour and capital 
are incorporated into the economic model, proactive investments in mechanisation and R&D 
(i.e., robotisation) could further diminish the adverse impacts of heat stress. The effectiveness 
of shifting working hours has not been investigated since we use daily levels of climate 
variables, while sub-daily data would be required. However, the potential of shifting working 
hours could already be limited in the most heat-exposed regions. The epidemiological exposure-
response relationship used in this study is also very uncertain since this is calibrated based on 
a limited number of filed studies. More research is needed to derive region- and sector-specific 
exposure-response functions for heat stress impacts. Furthermore, we assess the economic 
response to long-term trends in climate variables, while focusing on single extreme events and 
compound events could be an avenue for future research. Crop yield losses tend to occur in the 
same period across different regions due to large scale teleconnections (Kornhuber et al., 2020; 
Zscheischler et al., 2018). An increase in climate volatility may lead to a sudden production 
loss across many regions, which could coincide with severe worker productivity losses due to 
heat stress.    
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