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Abstract Predicting the surface albedo of a forest of a given species composition or plant functional type
is complicated by the wide range of structural attributes it may display. Accurate characterizations of forest
structure are therefore essential to reducing the uncertainty of albedo predictions in forests, particularly in
the presence of snow. At present, forest albedo parameterizations remain a nonnegligible source of
uncertainty in climate models, and the magnitude attributable to insufficient characterization of forest
structure remains unclear. Here we employ a forest classification scheme based on the assimilation of
Fennoscandic (i.e., Norway, Sweden, and Finland) national forest inventory data to quantify the magnitude of
the albedo prediction error attributable to poor characterizations of forest structure. For a spatial domain
spanning ~611,000 km2 of boreal forest, we find a mean absolute wintertime (December–March) albedo
prediction error of 0.02, corresponding to a mean absolute radiative forcing ~0.4 W/m2. Further, we evaluate
the implication of excluding albedo trajectories linked to structural transitions in forests during transient
simulations of anthropogenic land use/land cover change. We find that, for an intensively managed forestry
region in southeastern Norway, neglecting structural transitions over the next quarter century results in a
foregone (undetected) radiatively equivalent impact of ~178 Mt-CO2-eq. year

�1 on average during this
period—a magnitude that is roughly comparable to the annual greenhouse gas emissions of a country such
as The Netherlands. Our results affirm the importance of improving the characterization of forest structure
when simulating surface albedo and associated climate effects.

Plain Language Summary Surface albedo—or the ratio of reflected to incoming sunlight—is an
important physical property of the climate system and, as such, requires skillful prediction by climate
models. Predicting the surface albedo in a forest during months with snow is complicated by many factors,
among which is the sufficiency by which a forest’s physical properties are represented in the model. This
study makes use of detailed national forest inventory information to estimate the contribution to albedo
prediction error that may be wholly attributed to insufficient characterizations of forest structure in a climate
model, which we find to be nonnegligible. This study also investigates the consequence of ignoring structural
transitions in forests when predicting future surface albedo impacts of forest management activities in
climate modeling studies. For a case study region in southeast Norway, we find that not accounting for
differences in surface albedo between forests in various development states can result in substantial climate
effects going undetected, with magnitudes on the order of the annual greenhouse gas emissions of some
European countries such as The Netherlands, or approximately 2 days of current global CO2 emissions.

1. Introduction

Amplification of CO2-forced warming at high latitudes is strongly linked to the surface albedo feedback or the
extra absorption of shortwave (SW) radiation as melting snow and ice expose darker surfaces (Budyko, 1969;
Hall, 2004; W. D. Sellers, 1969; Winton, 2006). Our confidence to predict global climate change connected to
anthropogenic greenhouse gas emissions is therefore directly tied to the skillfulness by which climatemodels
predict (calculate) surface albedo in high-latitude environments. Recent climate model intercomparison
studies illustrate that models continue to struggle with albedo predictions in high latitude forests, particularly
in the presence of snow (Boisier et al., 2013, 2012; Y. Li et al., 2016; Loranty et al., 2014; Qu & Hall, 2014; Wang
et al., 2016). Sources of the albedo prediction error may stem from: (i) differences in the predicted snow cover
extent or snowpack physical properties; (ii) differences in the albedo parameterizations themselves (i.e., the
parameters that control snow canopy interception and unloading, and snow aging and melt); (iii) differences
in the vegetation mapping (i.e., biogeography); and (iv) differences in structural properties of the vegetation.
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Key Points:
• Absolute surface albedo prediction
error due to insufficient
characterization of forest structure can
be as large as 0.19 in Fennoscandia

• Winter (December–March) radiative
forcing of albedo prediction error
linked to forest structure is 0.4 W/m

2

for a spatial domain of 611,000 km
2

• Neglecting forest albedo transitions
when simulating forest management
can lead to large shortwave energy
balance prediction error
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Physical attributes, such as leaf area, stem area, and tree and canopy heights, are important structural con-
trols on the surface albedo of forests (Myneni & Ross, 1991; P. J. Sellers, 1985). While recent investigations
have typically focused on the prediction error arising from differences in model parameterizations of albedo
(Bartlett & Verseghy, 2015; Boisier et al., 2013; Bright et al., 2015; Thackeray et al., 2014, 2015), model repre-
sentations of snow physical attributes and/or spatial coverage (Boisier et al., 2013; Y. Li et al., 2016;
Thackeray et al., 2015), or from differences in the vegetation mapping (Boisier et al., 2012), few studies have
evaluated the prediction error attributable to differences in model representations of vegetation structure.
Recent attribution analyses elsewhere have suggested that errors in simulated vegetation structure could
be an important source of the persistent albedo prediction error seen in the current generation of climate
models (Y. Li et al., 2016; Wang et al., 2016).

Observations suggest that variation in albedo within individual vegetation cover types is significant for
forests, particularly in the presence of snow (Gao et al., 2014), most likely because of significant within-forest
variation in vegetation structure. A forest classified as “evergreen needleleaf” in one region may comprise a
species composition and age class structure—and hence overall structure—that is notably different to the
same forest class in another region. Since resolving surface albedo (and/or other surface fluxes) for vegetated
surfaces in a climate model depends on structural attributes of the vegetation, it follows that any error in the
prescription or prediction of vegetation structure in time and space propagates to error in the albedo (or sur-
face flux) prediction. Wang et al. (2016) recently found strong correlations between error in predicted forest
structure (leaf area index [LAI] and tree cover fraction) and error in predicted surface albedo amongst several
Coupled Model Intercomparison Project Phase 5 models during winter but did not distinguish whether the
error was attributed to a poor land cover/plant functional type (PFT) specification (i.e., the vegetation
mapping/biogeography) or to insufficient structural parameterizations in forests (i.e., LAI and tree cover frac-
tion). For many of the same climate models, Li et al. (2016) found a strong correlation between LAI and win-
tertime albedo predictions across models but did not quantify the albedo prediction error attributable to a
deficiency in the LAI prediction.

Here our primary objective is to gain additional insight into the magnitude of the albedo prediction error that
is fully attributable to insufficient characterizations of forest structure. To this end, we employ a forest classi-
fication scheme (Majasalmi et al., 2018) based on national forest inventory (NFI) information that accounts for
major within forest differences in structure within Fennoscandia (Norway, Sweden, and Finland)—a region
with a large anthropogenic footprint in forests. Rather than explicitly quantify the albedo prediction error
attributable to insufficient prescriptions of specific structural attributes such as tree cover fraction or LAI,
for example, we do so implicitly through area-based representations of forest cover where only the number
of forest cover types (i.e., classes) per unit area is allowed to vary, and where the structural attributes remain
fixed for each forest cover type (class). In this way, the magnitude of the albedo prediction error attributable
to differences in forest structure can be inferred directly from differences in the forest classification. An
advantage of this approach is the ability to differentiate between the error arising from differences in the
vegetation mapping from that which arises from an insufficient characterization of forest structure. A further
advantage of the approach is the ability to assess the skillfulness by which climate models are able to faith-
fully represent gross albedo transitions in managed forests; that is, albedo changes over time per unit of for-
est area. Unlike other vegetation cover types, structural transitions in forests—particularly in alpine and
boreal environments—play out over much longer time scales. In transient climate model simulations of pre-
scribed land use/land cover change (LULCC), poor initial parameterizations of forest structure can result in
substantial albedo prediction error, particularly when forcings or feedbacks are integrated over longer time
scales. Although some climate models assimilate optical satellite information to constrain important struc-
tural parameters locally when compiling present-day surface data sets (Lawrence & Chase, 2007), this infor-
mation may be lost in prognostic simulations involving managed lands, where future vegetation structure
must still be prescribed over longer time horizons (W. Li et al., 2017; Pongratz et al., 2018). Further, structural
information such as LAI derived from optical satellite remote sensing is biased low in boreal coniferous for-
ests and is hence unreliable (Heiskanen et al., 2012; Serbin et al., 2013; Tian et al., 2004; Wang et al., 2016).

Since many climate models rely on land cover-dependent (or rather, PFT-dependent) lookup tables of key
structural parameters for computing surface albedo (Clark et al., 2011; Oleson et al., 2013; Reick et al.,
2012), the ability to faithfully represent gross structural transitions in managed forests—and the associated
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albedo changes over time—is ultimately constrained by the number of forest cover (forest plant functional)
types included in the model and the validity of their structural parameters. Hence, increasing the number of
forest classes (or PFTs) to account for structural differences at varying successional stages represents one
option for improving albedo predictions in climate modeling simulations involving transient LULCC (i.e., for-
est management). We hypothesize that ignoring gross structural transitions in transient forest management
simulations can lead to poor albedo predictions with noteworthy climate ramifications. Thus, a second
research objective is to quantify the impact of excluding gross structural transitions on the simulated surface
albedo of a managed forest. This is carried out by comparing albedo predictions over an extended time span
based on two classifications: one that does not distinguish between within class variations in forest structure,
and one that does. Albedo differences over time between the two simulations are quantified in terms of a
radiative forcing (RF) and an associated CO2 equivalent effect.

2. Materials and Methods
2.1. Workflow Summary

Our analysis comprises three main components: (1) quantification of land cover-dependent albedos, (2)
quantification of albedo prediction error and associated RF attributable to insufficient characterization of for-
est structure, and (3) quantification of the RF impact of not accounting for gross structural transitions when
simulating transient LULCC. Land cover-dependent albedos for snow-free and snow-covered surfaces are first
derived with Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution
Function/Albedo (Lucht et al., 2000; Schaaf et al., 2002) retrievals and three alternate classifications of forest
cover in Fennoscandia. The first classification is based on the latest, off-the-shelf version of the global land
cover product of the European Space Agency’s Climate Change Initiative (ESA CCI LC v.2.0.7 2015;
Bontemps et al., 2013; European Space Agency, 2017; Hollmann et al., 2013). The second classification is
based on the same ESA CCI LC product but with the forest classification modified to the 12-class scheme
recently described in Majasalmi et al. (2018). The third classification is the same as the former but with an
additional distinction between “Open” and “Closed” forests yielding a total of 24 forest classes. The MODIS-
derived albedos are then used to predict the intrinsic surface albedos (“black-sky”/directional-hemispheric
and “white-sky”/bidirectional-hemispheric) of several broadbands (near infrared, visible (VIS), entire SW) for
four regional subsets under present-day land surface conditions, with predictions subsequently compared
to MODIS albedo retrievals and error computed. Finally, we simulate time-dependent albedo transitions con-
nected to a 96-year forest management scenario in which forest cover classifications are based on both the
original ESA product and the modified 12-class ESA product described above, quantifying the difference in
predicted albedo between the two simulations in terms of RF and CO2 equivalent emissions.

2.2. Land Cover Classification

The Fennoscandic region (Figure 1) is a region characterized by steep topographical gradients and wet, mild
climates to the west, and by increasingly flat terrain with more continental climates to the east. One pine
(Scots pine, Pinus sylvestris L.), one spruce (Norway spruce, Picea abies H. (L.) Karst), and two birch species
(Downy birch, Betula pubescens Ehrh.; Silver birch, Betula pendula Roth) comprise ~95% of all forest area
found in the region (KSLA, 2015; Luke, 2012; Skrøppa, 2012).

The reference land cover classification for Fennoscandia is based on the latest version (v2.0.7 2015) of the glo-
bal ESA CCI LC product (European Space Agency, 2017), which includes 22 main land cover classes with 15
subclasses mapped to ~300 m spatial resolution. The ESA classification in the Fennoscandic domain (main-
land areas of Norway, Sweden, and Finland) includes 19 of the 22 main classes and 7 of the 15 subclasses.
The main forest classes include broadleaved deciduous, needleleaved deciduous, needleleaved evergreen, and
mixed forest. No distinction between “Closed” (>40% tree cover) and “Open” (15%–40% tree cover) forest
subclass is made in the region. Larch (Larix spp.) and other deciduous needleleaved tree species occur in such
limited abundance in our study domain (< 0.003% of total domain area) that they were reclassified as decid-
uous broadleaved forest.

Majasalmi et al. (2018) recently applied NFI data to enhance forest classification in the ESA CCI LC product
(v2.0.7 2015) for the Fennoscandian region using a classification scheme that groups forest stands by both
dominant tree genera and development stage using Euclidean distance-based classifiers. The enhanced
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forest classification comprises a total of 12 forest classes: three main classes (based on dominant genera) and
four subclasses (based on development stage). The 12 classes replace the original forest classification in the
ESA product (see Majasalmi et al. (2018) for details). Illustrated in Table 1, increases in development stage
(subclass) correspond to higher stem volume densities, higher maximum leaf area indices (LAIs), higher
basal-area-weighted heights (“Lorey’s height”), and longer crown lengths.

Because the mapping in Majasalmi et al. (2018) was based on high-resolution NFI data (≤ 30 m), the subclass
distinction between “Open” and “Closed” forest could be included for the study region, thus representing a
second alternate classification comprising 24 forest classes (3 genera × 4 development stages × 2 tree cover
fractions). The same nonforest land cover types were used for all three classifications.

2.3. Land Cover-Dependent Surface Albedo

We adopt an albedo parameterization (“Type 3” in Qu & Hall, 2007) that is widely employed in climate
research (Betts, 2000; Essery, 2013; Myhre et al., 2005; Qu & Hall, 2014; Thackeray et al., 2015) where the total
pixel albedo is described as a linear combination of the individual land cover albedos—themselves being a
linear combination of their snow-free and snow-covered albedos weighted by the fraction of the pixel cov-
ered in snow:

Figure 1. Overview of the spatial extent of the four regional subsets, 2015 land cover fraction in the four regional subsets, and annual mean air temperature and
precipitation of the four regional subsets (2001–2011 mean; Willmott & Matsuura, 2001). Forest cover fraction is based on Majasalmi et al. (2018).
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α ¼ f sc
Xn
i¼1

lciαi;sc þ 1� f scð Þ
Xn
i¼1

lciαi;sf (1)

where lci is the pixel fraction of land cover type (or class) i, n is the total
number of land cover types, fsc is the pixel fraction covered in snow, and
αi, sc and αi, sf are the albedos of land cover type i under snow-covered
and snow-free conditions, respectively. In this albedo parameterization,
any variation in vegetation structure within a given land cover type i is
assumed to have no effect on αsc and αsf. Further, parameters αi, sc and
αi, sf are insensitive to local environmental factors influencing the albedo
of vegetation canopies and of snow at the surface.

We employ linear spectral “unmixing” (Bioucas-Dias et al., 2012; Keshava &
Mustard, 2002; Kuusinen et al., 2013) to estimate αi, sc and αi, sf as regres-
sion coefficients minimizing the sum of squared residuals between predic-
tions made with equation (1) and the empirical record. Ordinary least
squares regression is performed for the original ESA CCI LC product, for
the 12-class forest-enhanced ESA CCI LC product, and for the 24-class
forest-enhanced ESA CCI LC product described above. Prior to the regres-
sions, land cover classes (or subclasses) occupying less than 1% of the total
domain area are merged with other similar classes to avoid poorly scaled
independent variable matrices (merging is reflected in the label codes of
Figure 2). Merged area comprises 3.7% of the total area within our
study domain.

We rely on MODIS product MCD43C Bidirectional Reflectance Distribution
Function/Albedo v005 (NASA LP DAAC, 2017) retrievals for both α and for
fsc at ~5,600-m spatial resolution. Albedo composites are produced every
8 days based on a 16-day window of surface reflectance observations

(Schaaf et al., 2002). We include all composites dates between January 2001 and December 2011 flagged
as “best quality, 75% or more with best full inversions” (i.e., integer value 0) with solar zenith angles <70°
(Schaaf et al., 2011) and discard everything else. The 2001–2011 means for all nondiscarded α and fsc retrie-
vals on each composite date (n = 46 year�1) are first computed and then averaged with means of other
composite dates falling within the same month (n = 3–4 mon.�1) to obtain monthly means.

2.4. Albedo Prediction Error and RF of Albedo Prediction Error

After deriving αsc and αsf from the linear unmixing regression approach described above (representing the
means for each land cover type i), we then apply equation (1) to calculate the albedo for each pixel
(~5,600 m) falling within the four regional subsets presented in Figure 1.

The regional subsets exhibit a range of species compositions and annual climate regimes characteristic of the
Fennoscandic boreal forest domain. Monthly mean albedo prediction error in forests is computed as the
difference between the albedo predicted with equation (1) and that obtained from the monthly mean
MODIS (MCD43C v005) record:

Ep;m ¼ αMODEL;p;m � αMODIS;p;m (2)

where Ep, m is the prediction error in pixel p and month m, and αMODEL, p, m and αMODIS, p, m are the monthly
mean predicted and monthly mean MODIS-retrieved albedos, respectively, in pixel p in month m. Absolute
monthly mean prediction error is given as

Ep;m ¼ ∣αMODEL;p;m � αMODIS;p;m∣ (3)

and the absolute error attributable to differences in the characterization of forest structure is given as

bEp;m ¼ EESA;p;m � EALT:;p;m (4)

where EESA is the absolute error when αi, sc and αi, sf in equation (1) are based on the three-class forest classi-
fication in the original ESA CCI LC product, and where EALT is the absolute error when αi, sc and αi, sf are based

Table 1
Overview of Structural Attributes Per Forest Cover Class in the Study Region
(Norway, Sweden, and Finland) According to Lookup Table Values Presented
in Majasalmi et al. (2018) Based on Regional NFI Data

LAIMAX HL CL VOL

ESA CCI LC, n forest class = 3
Evergreen needleleaf forest (ENF) 3.9 14 9.3 147
Mixed forest (MF) 3.7 12.9 8.5 127
Deciduous broadleaf forest (DBF) 3.3 11 6.7 92

Modified ESA CCI LC, n forest class = 12
Spruce 1 (S1) 1.4 7.5 6.3 22
Spruce 2 (S2) 4.3 12.3 10.1 92
Spruce 3 (S3) 6.7 16.8 13.2 201
Spruce 4 (S4) 9.1 22.0 15.8 374
Pine 1 (P1) 0.9 7.5 4.6 21
Pine 2 (P2) 2.4 11.6 6.7 80
Pine 3 (P3) 2.3 17.0 9.4 130
Pine 4 (P4) 4.4 17.2 8.4 236
Deciduous 1 (D1) 0.5 4.9 3.2 7
Deciduous 2 (D2) 1.8 8.4 5.5 36
Deciduous 3 (D3) 3.9 12.2 7.9 98
Deciduous 4 (D4) 7.0 18.3 10.3 227

Note. Values for “evergreen needleleaf forest” of the original ESA classifica-
tion (top rows) are the means of all “spruce” and “pine” classes. Values for
“mixed forest” of the original ESA classification are the means of all forest
classes. Values for “deciduous broadleaf forest” of the original ESA classifi-
cation are the means of all “deciduous” classes. “LAIMAX” = Maximum
growing season leaf area index (m2/m2); “HL” = Lorey’s (or basal-area
weighted) height (m); “CL” = Crown length (m); “VOL” = stem volume den-
sity (m3/ha2).
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on one of the alternate classifications (i.e., the 12- or 24-class forest-modified ESA CCI LC product). Note that
with equation (4), any errors related to insufficient parameterization of local environmental controls of
surface albedo are effectively removed.

Monthly and annual mean albedo prediction error is expressed in terms of a monthly and annual mean RF
through application of radiative kernels. Radiative kernels relate the local SW imbalance at top of the atmo-
sphere to a change in albedo at the surface (Shell et al., 2008; Soden et al., 2008). Here the radiative kernels
are derived from a 3-D, four-spectral band, eight-steam radiative transfer model (Myhre et al., 2007) based on
a discrete ordinate method (Stamnes et al., 1988). The model—parameterized with 2004 atmosphere data
(Dee et al., 2011) and run at 3 hr time steps—has a horizontal resolution of 1° × 1° and a vertical resolution

Figure 2. Land cover cover-dependent white-sky albedos as fits from ordinary least squares regressions using the model presented as equation (1).
“DBF” = deciduous broadleaf forest; “ENF” = evergreen needleleaf forest; “VIS” = visible band (300–700 nm); “NIR” = near-infrared band (700–5,000 nm);
“SW” = shortwave (300–5,000 nm); “Open” = >15% to <40% tree cover; “Closed” = >40% tree cover. For black-sky albedos, see Tables A1–A3 of the Appendix.
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of 40 layers. Local RF (i.e., at MODIS pixel resolution) is therefore dependent on the mean atmospheric reflec-
tance, transmission, and absorption properties of the coarser 1° × 1° kernel.

Monthly mean RF of the monthly mean albedo prediction error is computed as

RFE;p;m ¼ 100Kp;mEp;m (5)

where Kp, m is the radiative kernel or the change to the SW radiation flux at top of the atmosphere per 0.01
decrease in albedo at surface in pixel p and month m (in W/m2).

2.5. Transient Forest Management Simulation

Many climate modeling studies of transient anthropogenic LULCC do not account for gross structural transi-
tions in forests (Pongratz et al., 2018). While some effort has been undertaken to include the carbon cycle per-
turbation associated with forest harvests in climate models (Lawrence et al., 2012; Reick et al., 2013), the
corresponding change to forest structure and the resulting perturbation to surface albedo and other climate
effects are still mostly ignored. An exception here is the recent modeling study by Naudts et al. (2016) who
accounted for structural transitions in the model by updating the structural parameters within each forest
PFT at each time slice. Our interest here is in gaining a better understanding of the implication of not account-
ing for gross transitions in forests. Unlike the Naudts et al. (2016) approach, however, structural transitions
here are implemented by updating the land cover map itself rather than the land cover (or PFT)-dependent
structural parameters. To this end, a 96-year forest management scenario in Region A (Figure 1) is con-
structed where surface albedo is first predicted for a reference case with albedo parameters αi, sc and αi, sf
based on the original ESA 3-class forest classification and where no structural transitions occur following dis-
turbance events like harvests (i.e., “ENF” [evergreen needleaved forests] remains ENF)—as would be done in
manymodeling studies of prescribed land cover change that rely on updates to PFT area to account for struc-
tural changes on land (W. Li et al., 2017; Pongratz et al., 2018). We then compare outcomes to an alternate
case in which surface albedo is predicted using the albedo parameters of the 12-class forest classification
scheme, with classification updated annually using the genus- and development class-dependent residence
times shown in Figure 4b. Here forest genera (i.e., the three main classes “spruce,” “pine,” and “deciduous”)
remain fixed for each grid cell, while within-genera forest classifications (i.e., the four development classes)
are allowed to evolve over time from their present-day state. Rotation lengths for spruce, pine, and birch for-
ests are 96 years, 96 years, and 60 years, respectively, after which forests are clear-felled and development
class “4” is replaced by development class “1.”

2.6. CO2 Equivalence of Local RF

Local RFE, p, m is converted to either an annual instantaneous or a time-accumulated CO2 emission equivalent
following the methods described in Bright et al. (2016) and presented here for the reader’s convenience:

TIEEE;p ¼ 12�1
Xm¼12

m¼1
RFE;p;m

� �
A�1
e k�1

CO2
(6)

where TIEE is the local time-independent CO2 equivalent effect of an instantaneous annual RF (in kg-CO2-eq.
m�2) in pixel p, RFE, p, m is the mean instantaneous RF of the mean albedo error in pixel p and monthm, Ae is
Earth’s surface area (in square meters), and kCO2 is the radiative efficiency of CO2 in the atmosphere at a con-
centration of 389 ppmv (1.76 × 10�15 W·m�2·kg�1).

For a transient albedo change scenario having a time dependency at interannual scales, CO2 equivalence is
computed as

TDEEE;p ¼ k�1
CO2

Y�1
CO2

RF (7)

where TDEE is a column vector of time-dependent emission equivalents with length defined by the number
of annual time steps included in the land management scenario (in kg-CO2-eq. m

�2 year�1), RF is a column
vector of annual global mean instantaneous RFE, p (12�1 Pm¼12

m¼1 RFE;p;m ) but for a time-dependent albedo
change scenario (in W·m�2·year�1), and YCO2 is a lower triangular matrix with column (row) elements as
the atmospheric CO2 fraction decreasing (increasing) with time, computed with an impulse-response func-
tion (Joos et al., 2013) and a fixed CO2 background concentration of 389 ppmv.

The time-accumulated CO2 equivalence for any given time slice of the transient forest management simu-
lation described in section 2.5 represents the sum of the row elements in the vector TDEE corresponding
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to the time steps within that time slice (with the first row in TDEE corresponding to the present-day time
step or t = 0).

3. Results
3.1. Land Cover-Dependent Albedos

Figure 2 presents the land cover-dependent albedos for snow-covered (αsc) and snow-free (αsf) surface con-
ditions fitted with equation (1) and subsequently employed to reconstruct albedos at the scale of the
MCD43C pixel (~0.05°/~5,600 m). Only results for white-sky albedo are presented henceforth, as these are
more likely representative of the actual climatological (long-term average) albedos of our study domain—
a region that, on average, experiences diffuse illumination conditions >50% of the time (based on the ratio
of incident-to-incoming solar radiation flux between 2001 and 2011 derived from Clouds and the Earths
Radiant Energy System Energy Balanced and Filled products; Kato et al., 2012; Loeb et al., 2012). White-sky
αsc values tend to be ~5–10% lower than the black-sky αsc values, whereas the black- and white-sky αsf values
are more in agreement with each other (refer to Tables A1, A2, A3 of the Appendix for a comparison of
these values).

Starting with nonforest land cover types (Figure 2, bottom panels, gray markers), most values fall within
observed ranges reported elsewhere (Gao et al., 2005, 2014) for an alternate land cover classification
based on MODIS surface reflectance and the International Geosphere Biosphere Program (IGBP) classifi-
cation scheme (Friedl et al., 2002). Notable exceptions include αsc for “Crop” and “Mosaic Tree and
Shrub,” which are found to be ~50% and ~150%, respectively, of αsc for “Croplands” and “Woody
Savannahs” according to IGBP classification in similar regions. For forests (black markers, upper six
panels), differences in regional αsc between the ESA CCI and the IGBP classification for areas classified
as “evergreen needleaved forests” and “mixed forests” are negligible. We find an αsc of 0.52 for
“deciduous broadleaved forests” (Figure 2, third row left panel) that is ~40% higher than the αsc reported
elsewhere for the same classification based on IGBP. Snow-free albedos for all vegetation classes, includ-
ing forests, appear within ± 10% of those reported elsewhere for similar classifications based on IGBP
(Gao et al., 2005, 2014).

The effect of forest structure clearly emerges when comparing within-genus αsc values for the 12-class and
24-class schemes. For the 12-class scheme, αsc decreases with increasing development stage for all genera,
illustrating the clear role of canopymasking of underlying snow (Figure 2, left column, middle panel). The role
of canopy masking of snow is also visible for the 24-class scheme, where less tree cover (“Open,” blue values)
equates to less snowmasking and higher overall αsc for each development stage relative to those classified as
“Closed” forest (red values). Within evergreen needleleaved forests, “SW” albedo under snow-covered surface
conditions (αsc) ranges from 0.13 to 0.39 for the 12-class scheme and 0.16 to 0.47 for the 24-class scheme
(classes “Pn” and “Sn”), whereas αsc for the original 3-class scheme is fixed at 0.24 (ENF, Figure 2 third row left).
For deciduous broadleaved forests, αsc (SW) ranges from 0.24–0.59 for the two alternate forest
classifications (“Dn”).

Canopy-masking effects are less apparent for αsf, reflecting the larger signal contribution from underlying
soils and vegetation (Figure 2, right column). Visible band albedos (300–700 nm) are highest in
snow-covered surface conditions (Figure 2, “VIS,” left column) and lowest in snow-free conditions
(Figure 2, VIS, right column), while the opposite tends to be true for the near-infrared band (Figure 2,
700–5,000 nm).

3.2. Albedo Prediction Error, RF of Albedo Prediction Error, and Inferred Structural Prediction Error

Figure 3 illustrates that—irrespective of which forest cover classification is applied—the range in the albedo
prediction error for most months is not reduced (Figures 3a–3d, whisker and box lengths). This is because the
model (equation (1)) does not account for local environmental factors influencing the albedo of forested
canopies and of snow. However, the two alternate classifications lead to notable error reductions in most
winter months for all regions (Figures 3a–3d), suggesting improvements to the treatment of canopy masking
and important controls related to forest structure.
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Irrespective of which forest classification is applied, larger monthly mean albedo prediction error
(E) is seen in Region C relative to the other three regions (Figure 3c), owing to large underpredic-
tion error in months of February–March and large overprediction error in the month of November.
Relative to the other three regions, Region C is relatively cold and wet in February–March while
relatively dry in November. Because the albedo parameters for snow-covered surfaces (αsc) are
based on average conditions, their application can underestimate the albedo of fresh snow or that
of the forest canopy in colder and wetter conditions, and vice versa in warmer or drier conditions.

Figure 3. (a–d) Monthly surface albedo prediction error in forests (E) in each of the four regional subsets. (e–h) Monthly RF of the regional monthly mean albedo
prediction error in forests, or RFE mean ¼ N�1 Pp¼N

p¼1 RFE;p
� �

. (i–l) Inferred surface albedo prediction error linked to forest structure, or the difference in the monthly
absolute surface albedo prediction error between the 3-class and the two alternate forest classification schemes. Annual mean regional mean absolute errors are
shown at the bottom for surface albedo (Figures 3a–3d) and RF (Figures 3e–3h).
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In this region, a lack of high-quality MODIS retrievals prevented error computation in the month
of December.

For all spatial subsets, mean E is largely reduced in months of December–April when the albedo parameters
of the two enhanced forest classifications are applied relative to those of the original 3-class ESA CCI forest
classification (Figures 3a–3d, green and blue values versus red values). The effect of the reduced mean E seen
late in the snow season (months of March and April) is more fully appreciated whenmeasured in terms of the
regional mean RF (Figures 3e–3h, right column of panels), which takes into account the increasing solar radia-
tion loads incident at the surface. For Regions B and C, the use of the two alternative classifications reduces
the RF error up to ~0.2–0.4 W/m2 in March and April (Figures 3f and 3g). For Region A, an albedo error reduc-
tion as little as ~0.01 in April corresponds to a reduction in RF error of up to ~0.6 W/m2 (Figure 3e, based on
the mean E of the two enhanced classifications). The most notable improvements are found for Region D for
the 12-class scheme, where a reduction in the March E of ~0.02 (mean) equates to a reduction in RF error of
up to ~0.9 W/m2 (Figures 3d and 3h). However, for April in this same region, the albedo and corresponding RF
errors of the two alternative classifications are slightly increased in magnitude relative to predictions based
on the original ESA 3-class forest classification.

In snow-free months (May–November), no systematic error reductions are detected for the two alternative
forest classification schemes compared to the original 3-class product. Additionally, no systematic error
reductions are seen in any season for the 24-class scheme distinguishing between “Open” and “Closed” forest
types relative to the 12-class scheme, although this may not necessarily be the case for predictions in other
forested regions of the study domain.

The inferred surface albedo error attributable to insufficient characterizations of forest structure is more fully
visible in Figures 3i–3l, which shows differences in the absolute monthly surface albedo errors between the

3-class and the two alternate forest classification schemes orbE. Such structural-related error is largest in winter
(December–March), averaging ~0.02 across all subset regions and a total forest area of ~611,000 km2. Locally,

or at the scale of an individual pixel (~0.05°), bE can be as large as 0.19, which may be seen in Region B for the
months of February and November (Figure 3j, outliers). These findings support the overarching research
hypothesis that insufficient characterizations of forest structure can be an important source of albedo predic-
tion error in high-latitude forests, particularly in months with snow.

3.3. Impact of Excluding Gross Structural Transitions in Forests

The impact of excluding gross structural transitions when simulating LULCC in forests is presented in Figure 4.
Here this impact is expressed as the difference in the 24-year mean local predicted albedo, the associated
24-year mean local RF, and the 24-year accumulated CO2 equivalent emission (per pixel) for four time slices
in Region A.

As seen in Figure 4c, not including gross structural transitions in regional forests when simulating region
forest management activities (i.e., harvest and regrowth) over the next 96 years can result in predicted
surface albedo discrepancies ranging from �0.07 to 0.13 locally (24-year means). Such discrepancies are
primarily related to differences in αsc between the original ESA forest classes and younger (or less productive)
forest classes “1” and “2” of themodified classification scheme (Figure 2). When expressed in terms of RF, such
differences can range from 4 to�9 W/m2 locally (Figure 4d, 24-year means). At present, Region A is predomi-
nately composed of older pine and spruce residing in subclasses “3” and “4” that are slated to be harvested in
the next 25–50 years (Figure 4a). Hence, neglecting structural variations in regional forests over the first
24 years of the simulation leads to severe overprediction of the surface albedo (Figure 4c, first left panel)
—in some areas (pixels) by as much as 0.12 (24-year mean). Taken on average for the entire region, the posi-
tive surface albedo discrepancy equates to a local RF of �1.1 W/m2 (24-year mean). The time-accumulated
TDEE for the first 24-year time slice summed over all pixels (~156,000 km�2) is �4.3 Gt-CO2-eq. As mature
forests are harvested in the second 24-year time slice (Figure 4c, second panel from left), the implication of
not accounting for differences in structure between young and mature forests leads to severe underpredic-
tion of surface albedo—in some areas (pixels) approaching �0.07 (24-year mean). On average, underpredic-
tion of surface albedo in the region equates to a regional annual mean RF of 0.46 W/m2 during this period,
corresponding to an accumulated CO2-eq. emission of 1.6 Gt-CO2-eq.
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Over the full 96-year transient simulation, the difference in predicted surface albedo between the reference
(3-class) and alternative (12-class) forest classification for the region equates to an accumulated emission of
�4.7 Gt-CO2-eq. or approximately �48 Mt-CO2-eq. year

�1 on average.

4. Conclusions

Unraveling sources of albedo prediction error by climate models is complicated by the various ways in which
surface albedo, snow characteristics and extent, and vegetation cover and structure are parameterized. The
latter is further complicated by the model’s reliance on key structural parameters that are vegetation (PFT)
dependent, making it hard to distinguish between the error caused by erroneous mapping of the vegetation
cover (i.e., biogeography) and that which is caused purely by erroneous structural characterizations. Here our

Figure 4. (a) Temporal evolution of forest area by development class and four aggregate time slices in the transient forest management simulation for Region A;
(b) Residence times or the number of years that a given development class remains in that class. (c) Mean predicted local Δα (Δα = αREF � αALT) between the
3-class (reference) and 12-class (alternate) forest classification schemes for the four aggregate time slices. (d) The mean local RF of Δα. Note that Figures 4a
and 4b share a legend, and that “D1” replaces “D4” after 60 years. The reader is referred to Figure 3 of Majasalmi et al. (2018) for an overview of the regional
distribution of the 12 forest classes.
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primary objective was to quantify the magnitude of the error attributable solely to erroneous structural
characterizations when controlling for (i.e., eliminating) the source of the error introduced by erroneous
mapping of vegetation cover. By comparing albedo predictions based on a forest classification that takes into
accountmajor structural differences at various successional stages of development (i.e., the enhanced ESA CCI
LC product ofMajasalmi et al., 2018) to one that does not (i.e., the original ESA CCI LC product), wewere able to
isolate and infer the magnitude of the albedo prediction error attributable exclusively to any difference in the

representation of forest structure. Locally (i.e., at pixel scale), this structural-related error (bE) was found to be as
large as 0.19 inmonthswith snow, which is on the same order ofmagnitude as that whichmay stem frompoor
climate model parameterizations of factors controlling canopy snow interception and unloading in boreal
forests (Bartlett & Verseghy, 2015), or from deficient model parameterizations of snow metamorphosis and
aging (Essery et al., 2013, 2009; Y. Li et al., 2016). When averaged across the landscape—or a total forest area
of ~611,000 km2—the mean absolute structural error from December to March was found to be as large as
0.02, equating to a mean absolute error in predicted RF of around 0.4 W/m2 that is approximately equivalent
to a pulse emission on the order of 273 Mt-CO2-eq. (TIEE, equation (6)).

Although we have not evaluated individual climate (land) models to explicitly identify sources of error origi-
nating from insufficient characterization of any one specific structural attribute such as tree or canopy height,
LAI, or tree cover fraction (among others)—our results provide a robust general indication of the improve-
ment potential that exists by way of improved model representations of forest structure in boreal environ-
ments. Such improvement potentials are mostly confined to snow-covered conditions that can be
important for improving estimates of surface albedo feedbacks (Hall, 2004; Qu & Hall, 2014; Winton, 2006).
Further, results of our secondary analysis demonstrated the importance of accounting for gross structural
transitions in forests when simulating surface albedo in transient land use scenarios involving forest manage-
ment. We found that, for an intensively managed forestry region in Norway spanning an area as little as
156,000 km2, the effect of ignoring gross albedo transitions in forests over the next 96 years is equivalent
to not accounting for an emission of 48 Mt-CO2-eq. year

�1 (2016; Eurostat, 2017). Over the short term (i.e.,
next quarter century), given the current forest age class structure in the region, excluding gross albedo tran-
sitions is equivalent to not accounting for an emission of ~178 Mt-CO2-eq. year

�1 that is roughly the annual
emission of a country like The Netherlands (Eurostat, 2017), or to frame it in a different perspective, about
2 days of current level global CO2 emissions.

Improving the characterization of forest structure and accounting for gross structural transitions in climate
models is crucial to instilling greater confidence in predictions that inform prospective mitigation and

Table A1
Albedo parameters for the study domain (Norway, Sweden, and Finland) Based on Regressions Using the Original ESA CCI Land Cover Product (v2.0.7 2015), 2001–2011
MODIS Albedo (MCD43C), and 2001–2011 MODIS Snow Cover Fraction (MCD43C)

Black sky White sky

SW NIR VIS SW NIR VIS

αsf αsc αsf αsc αsf αsc αsf αsc αsf αsc αsf αsc

Freshwater [210] 0.03 0.48 0.03 0.38 0.02 0.58 0.03 0.47 0.03 0.37 0.02 0.57
Bare [200–202; 220] 0.11 0.60 0.16 0.45 0.08 0.74 0.12 0.60 0.16 0.45 0.08 0.74
Urban [190] 0.12 0.18 0.18 0.14 0.06 0.23 0.13 0.15 0.19 0.11 0.06 0.20
Wetland [160; 180] 0.13 0.59 0.20 0.47 0.05 0.73 0.13 0.57 0.20 0.44 0.05 0.71
Sparse veg. [150–153] 0.14 0.64 0.21 0.49 0.07 0.78 0.14 0.64 0.21 0.49 0.07 0.78
Lichens and Moss [140] 0.12 0.43 0.16 0.38 0.07 0.51 0.11 0.42 0.16 0.36 0.07 0.50
Grass [130] 0.18 0.73 0.30 0.59 0.05 0.89 0.17 0.69 0.30 0.54 0.05 0.85
Shrub [120–122] 0.16 0.77 0.24 0.67 0.07 0.87 0.15 0.73 0.21 0.62 0.06 0.84
Mosaic herbaceous [110] 0.16 0.68 0.24 0.52 0.05 0.83 0.16 0.69 0.24 0.52 0.06 0.84
Mosaic tree and shrub [100] 0.14 0.57 0.21 0.46 0.05 0.69 0.13 0.55 0.21 0.44 0.04 0.68
MF [90] 0.12 0.27 0.20 0.25 0.03 0.28 0.13 0.23 0.21 0.21 0.03 0.25
ENF [70–72] 0.10 0.27 0.17 0.25 0.03 0.29 0.11 0.24 0.17 0.22 0.03 0.27
DBF [60–62] 0.13 0.53 0.21 0.41 0.04 0.65 0.13 0.52 0.21 0.40 0.04 0.63
Crop [10–12; 30–40] 0.15 0.35 0.23 0.31 0.06 0.40 0.15 0.32 0.23 0.27 0.06 0.38

Note. MF = mixed forest; ENF = evergreen needleleaf forest; DBF = deciduous broadleaf forest; SW = shortwave; VIS = visible; NIR = near infrared.
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adaptation policies involving the forestry sector. The concept of integrating forest “age cohorts” into land
models is important for being able to account for time-dependent structural dynamics in secondary forests
(Fisher et al., 2017; McGrath et al., 2015; Yue et al., 2018). The use of NFI data to constrain structural para-
meters of forest age cohorts can help ensure that the simulated structural transitions match those seen in
practice. Integrating modified forest classifications into existing maps of present-day land cover (Majasalmi

Table A2
Forest Albedo Parameters for the Study Domain (Norway, Sweden, and Finland) Based on Regressions Using the Forest-Enhanced ESA CCI Land Cover Product (Majasalmi
et al., 2018) With Forests Aggregated Into 12 Classes, 2001–2011 MODIS Albedo (MCD43C), and 2001–2011 MODIS Snow Cover Fraction (MCD43C)

Black sky White sky

SW NIR VIS SW NIR VIS

αsf αsc αsf αsc αsf αsc αsf αsc αsf αsc αsf αsc

Spruce 1 [301] 0.12 0.36 0.19 0.30 0.04 0.43 0.12 0.35 0.19 0.29 0.04 0.42
Spruce 2 [302] 0.10 0.34 0.16 0.27 0.03 0.41 0.11 0.32 0.16 0.26 0.04 0.39
Spruce 3 [303] 0.10 0.20 0.16 0.20 0.03 0.20 0.11 0.18 0.17 0.17 0.03 0.18
Spruce 4 [304] 0.09 0.18 0.15 0.20 0.03 0.16 0.09 0.14 0.15 0.14 0.03 0.12
Pine 1 [305] 0.12 0.42 0.19 0.35 0.04 0.49 0.12 0.39 0.19 0.32 0.04 0.47
Pine 2 [306] 0.11 0.31 0.17 0.28 0.03 0.36 0.11 0.29 0.17 0.25 0.03 0.33
Pine 3 [307] 0.10 0.27 0.16 0.25 0.03 0.29 0.11 0.24 0.17 0.22 0.03 0.27
Pine 4 [308] 0.10 0.20 0.16 0.22 0.03 0.18 0.10 0.16 0.17 0.18 0.03 0.15
Deciduous 1 [309] 0.13 0.58 0.20 0.46 0.04 0.68 0.13 0.56 0.20 0.44 0.04 0.67
Deciduous 2 [310] 0.13 0.46 0.20 0.36 0.04 0.55 0.13 0.45 0.20 0.35 0.04 0.54
Deciduous 3 [311] 0.14 0.44 0.23 0.35 0.04 0.53 0.14 0.42 0.23 0.33 0.05 0.51
Deciduous 4 [312] 0.12 0.27 0.19 0.21 0.04 0.33 0.12 0.24 0.19 0.18 0.03 0.30

Note. SW = shortwave; VIS = visible; NIR = near infrared.

Table A3
Forest Albedo Parameters for the Study Domain (Norway, Sweden, and Finland) Based on Regressions Using the Forest-Enhanced ESA CCI Land Cover Product (Majasalmi
et al., 2018) With 24 Forest Classes, 2001–2011 MODIS Albedo (MCD43C), and 2001–2011 MODIS Snow Cover Fraction (MCD43C)

Black-sky White-sky

SW NIR VIS SW NIR VIS

αsf αsc αsf αsc αsf αsc αsf αsc αsf αsc αsf αsc

Spruce 1, closed [3011] 0.12 0.34 0.18 0.29 0.04 0.39 0.12 0.33 0.19 0.27 0.04 0.38
Spruce 1, open [3012] 0.13 0.48 0.21 0.37 0.04 0.58 0.14 0.47 0.21 0.36 0.05 0.58
Spruce 2, closed [3021] 0.10 0.32 0.15 0.26 0.03 0.39 0.10 0.31 0.15 0.24 0.03 0.37
Spruce 2, open [3022] 0.14 0.48 0.22 0.38 0.05 0.59 0.14 0.47 0.23 0.36 0.04 0.58
Spruce 3, closed [3031] 0.10 0.19 0.17 0.19 0.03 0.18 0.11 0.16 0.17 0.16 0.03 0.16
Spruce 3, open [3032] 0.09 0.30 0.14 0.24 0.03 0.37 0.09 0.30 0.14 0.24 0.03 0.38
Spruce 4, closed [3041] 0.09 0.20 0.15 0.20 0.02 0.18 0.10 0.16 0.15 0.15 0.02 0.14
Spruce 4, open [3042] 0.09 0.28 0.14 0.22 0.04 0.33 0.09 0.27 0.14 0.19 0.04 0.31
Pine 1, closed [3051] 0.12 0.41 0.19 0.35 0.04 0.48 0.12 0.38 0.19 0.32 0.04 0.46
Pine 1, open [3052] 0.12 0.49 0.18 0.40 0.05 0.58 0.12 0.46 0.18 0.37 0.04 0.56
Pine 2, closed [3061] 0.11 0.31 0.17 0.28 0.03 0.35 0.11 0.29 0.17 0.25 0.03 0.33
Pine 2, open [3062] 0.10 0.33 0.15 0.28 0.03 0.40 0.10 0.33 0.15 0.27 0.03 0.40
Pine 3, closed [3071] 0.11 0.27 0.17 0.25 0.03 0.28 0.11 0.24 0.17 0.22 0.03 0.26
Pine 3, open [3072] 0.09 0.28 0.12 0.23 0.03 0.35 0.10 0.30 0.12 0.25 0.03 0.37
Pine 4, closed [3081] 0.10 0.20 0.17 0.22 0.03 0.18 0.10 0.17 0.17 0.18 0.03 0.16
Pine 4, open [3082] 0.10 0.28 0.15 0.24 0.04 0.33 0.10 0.28 0.14 0.21 0.04 0.35
Deciduous 1, closed [3091] 0.13 0.57 0.20 0.46 0.04 0.68 0.13 0.56 0.20 0.44 0.04 0.67
Deciduous 1, open [3092] 0.13 0.60 0.20 0.48 0.05 0.71 0.13 0.58 0.19 0.46 0.04 0.69
Deciduous 2, closed [3101] 0.13 0.44 0.20 0.35 0.04 0.53 0.13 0.43 0.20 0.34 0.04 0.52
Deciduous 2, open [3102] 0.13 0.53 0.21 0.40 0.05 0.66 0.14 0.54 0.21 0.40 0.05 0.66
Deciduous 3, closed [3111] 0.14 0.43 0.23 0.35 0.04 0.52 0.15 0.41 0.23 0.32 0.04 0.50
Deciduous 3, open [3112] 0.13 0.47 0.22 0.35 0.05 0.59 0.14 0.47 0.22 0.37 0.05 0.59
Deciduous 4, closed [3121] 0.12 0.29 0.18 0.22 0.03 0.35 0.12 0.26 0.19 0.20 0.03 0.33
Deciduous 4, open [3122] 0.13 0.29 0.21 0.22 0.04 0.38 0.13 0.28 0.21 0.21 0.04 0.35

Note. SW = shortwave; VIS = visible; NIR = near infrared.
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et al., 2018) can provide a spatially informed basis for constraining structural parameters of “cohort functional
types” (Yue et al., 2018). However, integrating additional development classes or “cohort functional types”
into models run at the global scale may impose additional computational challenges. For regional modeling
studies, however, additional computational costs are minimized and such effort may be more scientifically
justifiable.

Appendix A

Additional results for land cover-dependent black-sky albedos under snow-covered and snow-free
conditions are presented in Appendix Tables A1–A3.
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