Corrigendum to Geosci. Model Dev., 8, 3379–3392, 2015 www.geosci-model-dev.net/8/3379/2015/ doi:10.5194/gmd-8-3379-2015-corrigendum © Author(s) 2015. CC Attribution 3.0 License.

Corrigendum to "The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results" published in Geosci. Model Dev., 8, 3379–3392, 2015

B. Kravitz¹, A. Robock², S. Tilmes³, O. Boucher⁴, J. M. English^{5,6}, P. J. Irvine⁷, A. Jones⁸, M. G. Lawrence⁷, M. MacCracken⁹, H. Muri¹⁰, J. C. Moore¹¹, U. Niemeier¹², S. J. Phipps¹³, J. Sillmann¹⁴, T. Storelvmo¹⁵, H. Wang¹, and S. Watanabe¹⁶

¹Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA

²Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA

³National Center for Atmospheric Research, Boulder, CO, USA

⁴Laboratoire de Météorologie Dynamique, IPSL, CNRS/UPMC, Paris, France

⁵NOAA Earth System Research Laboratory, Boulder, CO, USA

⁶Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

⁷Institute for Advanced Sustainability Studies, Potsdam, Germany

⁸Met Office Hadley Centre, Exeter, UK

⁹Climate Institute, Washington, D.C., USA

¹⁰Department of Geosciences, University of Oslo, Oslo, Norway

¹¹Joint Center for Global Change Studies, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

¹²Max Planck Institute for Meteorology, Hamburg, Germany

¹³ARC Centre of Excellence for Climate System Science and Climate Change Research Centre,

University of New South Wales, Sydney, Australia

¹⁴Center for International Climate and Environmental Research, Oslo, Norway

¹⁵Department of Geology and Geophysics, Yale University, New Haven, CT, USA

¹⁶Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Correspondence to: B. Kravitz (ben.kravitz@pnnl.gov)

Published: 30 October 2015

This corrigendum is to point out and correct a publication error in the display of Figs. 3–6. In the following, Figs. 3– 6 are displayed in the correct order and with the correct caption. Noted is also a bibliographical update to an article (Gabriel and Robock, 2015) cited in the text.

References

Gabriel, C. J. and Robock, A.: Stratospheric geoengineering impacts on El Niño/Southern Oscillation, Atmos. Chem. Phys., 15, 11949–11966, doi:10.5194/acp-15-11949-2015, 2015.

Figure 3. Test simulations of reducing cirrus cloud optical depth (τ) as described in Sect. 2.4. τ were scaled by a factor of $\varepsilon < 1$ (*x* axis). The amount of surface air temperature change due to this scaling (*y* axis) was measured over a 4-year average; 0 indicates the global mean surface air temperature over years 2020–2023 in an RCP8.5 simulation. All simulations were performed using GISS ModelE2 (Schmidt et al., 2014).

Figure 5. Zonally averaged annual mean of the difference in relative humidity (%) from NorESM1-ME for an octupling of the cirrus ice crystal fall speed. Differences are calculated as an average over years 2050–2055 against a background of RCP8.5.

Figure 4. A sensitivity study of the effects of changing cirrus ice crystal sedimentation velocity in NorESM1-ME. vfx2, vfx4, and vfx8 indicate an increase in the sedimentation velocity by 2, 4, and 8 times, respectively. *y* axis shows the global mean temperature change as a function of year (*x* axis); differences are calculated with respect to an average over years 2050–2055 under an RCP8.5 scenario.

Figure 6. Schematic of experiment G7cirrus. Against a background scenario of the ScenarioMIP Tier 1 high forcing scenario, a representation of cirrus cloud seeding will reduce net forcing by a constant amount. This simulation will begin in 2020 and will be conducted for 80 years.