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Abstract  

When estimating climate change impact on crop yield, a typical assumption is constant 

elasticity of yield with respect to a climate variable even though the elasticity may be 

inconstant. After estimating both constant and inconstant elasticities with respect to 

temperature and precipitation based on provincial panel data in China 1980-2008, our results 

show that during that period, the temperature change contributes positively to total yield 

growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. 

The impacts of precipitation change are marginal. We also compare our estimates with other 

studies and highlight the implications of the inconstant elasticities for crop yield, harvest and 

food security. We conclude that climate change impact on crop yield would not be an issue in 

China if positive impacts of other socio-economic factors continue in the future. 
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1 Introduction 

Global food security can be threatened by climate change impacts on crop production 

(Wheeler and von Braun, 2013). Given the large population in China, there is considerable 

interest in the ability of China to manage the risks related to the climate change impacts. In 

China, agricultural production is potentially endangered by climate change and associated 

extreme climate events (Piao et al., 2010; Wang, 2009). Though localized impacts may be 

masked in national data (Carter and Zhang, 1998; Zhang and Huang, 2012), Chinese 

agricultural production has increased during the past 30 years despite rising average 

temperature and declining land area sown. Presuming that higher temperatures negatively 

affect crop production, this historical observation suggests that factors other than climate 

change have positive impacts. Hence, it is important to distinguish impact of climate change 

from other key determinants of crop production in order to evaluate the role of climate change 

impacts in Chinese agricultural production and food security. 

A widely applied approach to estimating climate change impact on crop yield is crop 

simulation modeling (e.g., Lin et al., 2005; Liu et al., 2010; Tao et al., 2009; Xiong et al., 

2012; Xiong et al., 2007; Zhang et al., 2013), where  key socio-economic factors other than 

climate variables in crop production are typically out of consideration (Challinor et al., 2009). 

To overcome the disadvantage, some efforts have been made to consider both variables in 

these models (Challinor et al., 2010; Ye et al., 2013). The impacts estimated from these 

models depend on specific model structures and parameter values besides climate projections 

(Asseng et al., 2013; Liu and Tao, 2012; Osborne et al., 2013). 

On the other hand, many researchers adopt a statistical approach to estimating climate change 

impact on crop yield (e.g., Lobell and Asner, 2003; Lobell et al., 2011; Nicholls, 1997; Zhang 
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et al., 2008). Several studies have made efforts to isolate impact of climate change on crop 

yield in China by statistical approach (e.g., Carter and Zhang, 1998; Peng et al., 2004; You et 

al., 2009; Zhou and Turvey, 2014). These interregional studies on the basis of data at either 

site or regional scale (Shi et al., 2013) do not treat climatic variables as pure random terms 

since regional differences in these variables are known by local farmers to a reasonable extent 

(Demir and Mahmud, 2002).  

One typical assumption in these studies is constant elasticity of crop yield with respect to a 

climate variable, meaning that one percentage change in a climate variable leads to the same 

percentage change in crop yield for all the reasonable values of the climate variable (e.g., You 

et al., 2009). The constant elasticity is then used to estimate climate change impact on crop 

yield. In a large region such as China, the elasticity is, on the contrary, likely to vary along 

with changes in climate variables such as temperature (Aaheim et al., 2012; Li et al., 2011; 

Schlenker and Roberts, 2009). For example, the average temperature of wheat growth season 

from 1980 to 2008 is as low as 6 ºC in Shanxi and as high as 18 ºC in Guangdong while the 

national average is around 12 ºC. It might be too cold for wheat growth in Shanxi and too 

warm in Guangdong. We could not expect that the same change rate in temperature has the 

same effect in both regions (i.e., constant elasticity). In crop science, non-linear response 

curves (Normal Heat Hours methods) have been proposed to study effects on thermal 

resources for crops (e.g., Mariani et al., 2012; Wang and Engel, 1998; Yan and Hunt, 1999). 

Hence, it is necessary to relax the assumption of constant elasticity in the case of China as 

indicated by a study showing nonlinear temperature impact on crop yield in the United States 

(Schlenker and Roberts, 2009). 

Recently Zhou and Turvey (2014) examine the interaction between a climate variable and a 

socio-economic variable in addition to the constant elasticity of the climate variable. They do 
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not, however, check whether or not the elasticity of a climate variable alone is constant. In 

addition, their dependent variable is total value product per area, where price effect is 

included. Xin et al. (2013) examine the various elasticity of a climate variable as well as 

interaction between a climate variable and a regional dummy on the basis of rural household 

survey data for three years (2003, 2005, and 2008). The climate variables in their study are 

seasonal averages and their elasticities vary considerably across regions in China. While the 

hypothesis of various elasticity is supported by household survey data (Xin et al., 2013), we 

will, in the present paper, study whether or not the hypothesis is supported by the aggregated 

provincial data, compare our results with other studies, and analyse its implications for crop 

harvest and food security. 

The remainder of the paper is organized as follows. The next section describes data and 

methodology. Section 3 reports the estimated results and offers a discussion on the 

implications of the results on crop yield and food security and the last section concludes the 

paper. 

 

2 Data and methodology 

Crop yields are a function of agricultural inputs such as climate, land, capital and labor.  To 

empirically investigate the impact of climate changes on crop yields, we constructed a panel 

data set that included yields of three crops (wheat, rice and maize) and related inputs from 

1980 to 2008. Data include provincial yield and cultivated area of rice (including early, late, 

and single rice), wheat (including spring and winter wheat) and maize, and irrigated area, 

agricultural machine power, fertilizer use, and employment in the agriculture sector. The 

relevant crop growth calendar was derived from the Chinese Agricultural Phenology Atlas 
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and can be found from the online Supporting Information (Appendix S2) in Zhang and Huang 

(2012). Climate data were obtained from the China Meteorological Administration. Table 1 

provides the definition and related remarks of the data used in this study. 

Table 1. Variable Definitions and Descriptive Statistics 

Variable Definition (source)  Mean SD 

    

Agricultural Yield crop-specific agricultural yield (tons/ha)   

     Wheat Source:  China Statistical Yearbooks 2.89 1.15 

     Rice  6.01 1.31 

     Maize  4.18 1.37 

    

Temperature crop-specific average temperature during growth 

season (Celsius) 

  

        Wheat Source: China Meteorological Administration 11.60 3.16 

        Rice  22.05 3.02 

        Maize   23.10 3.48 

    

Precipitation crop-specific total rainfall during growth season 

(mm) 

  

        Wheat Source: China Meteorological Administration 353.96 221.08 

        Rice  567.83 208.51 

        Maize  586.56 308.72 

    

Land crop-specific total area sown (1,000 hectares)    

     Wheat Source: China Statistical Yearbooks 1011.03 1201.35 

     Rice  1171.55 1240.47 

     Maize  868.08 839.33 

     

Agri Machine Pwr total power of agricultural machinery (10,000 kw) 1409.40 1628.49 

 Source: (NBSC, 2010)   

Irrigated Area total irrigated area (1,000 hectares) 1808.11 1276.67 

 Source: (NBSC, 2010)   

Fertilizer total chemical fertilizer usage (10,000 tons) 149.29 137.84 

 Source: (NBSC, 2010)   

Employment total agricultural employment (10,000 persons) 1190.50 896.76 

   Source: (NBSC, 2010)     
*data summary: 29 periods (1980-2008); 27 units (provinces);  due to missing data, omit Hainan, Qinghai and Tibet for all  

  periods, Tianjin, Fujian, and Zhejiang for 1980-84 and Gansu for 1980-82 

 

To examine the relationship of changes in climate on crop yields, we estimate the following 

panel model of crop yields for wheat, rice and maize: 

Yit = 1Climateit + 2Landit + 3Capitalit + 4Laborit + i + t + εit,   (1)  
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where Yit is the agricultural yield of province i in time t; Climateit is a vector of climate 

outcomes in province i in time t and includes mean crop-specific temperature and crop-

specific rainfall during crop growth season; Landit is the crop-specific total area sown for 

province i in time t (1,000 hectares); Capitalit is a vector of capital measures for province i in 

time t and includes the total power of agricultural machinery (10,000 kw), total irrigated area 

(1,000 hectares), and total chemical fertilizer usage (10,000 tons); Laborit is the total 

agricultural labor (10,000 persons) in province i in time t; i are province-specific effects that 

capture unobservable time-invariant province characteristics; t are time-specific effects that 

capture potential non-linear time trends; and εit is the contemporaneous additive error term.  

Table 1 provides the descriptive statistics for all the variables, along with definitions and 

sources. 

A few aspects of Eq. (1) warrant further discussion. First, we estimate crop-specific models 

for wheat, rice and maize. In explaining the crop yields separately, these models include crop-

specific temperatures, precipitation, and land sown along with the remaining general measures 

of capital and labor. Second, all models employ a double-log specification and therefore 

estimated coefficients are elasticities that measure the proportional responsiveness of one 

variable to changes in another. Third, since inputs tend to have interior optima (e.g., yields 

will fall with too much or too little rain), we estimate a second set of models that considers 

nonlinearities by including squared terms for inputs. With this specification, nonlinear 

elasticities must be calculated for a specific input value, which is defined as the linear 

coefficient plus the coefficient of the squared term multiplied by two and the logarithm of the 

specific input value. Fourth, all models take advantage of the panel nature of the data by 

controlling for unobserved province heterogeneity and time-specific fluctuations. We conduct 

Hausman (1978) tests to consider whether the province- and time-specific effects should be 
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considered fixed or random. For all regressions, the test rejects the random effects formulation 

in favor of the fixed effects model. 

3 Results and discussion 

Table 2 reports the results from the six models--two double-log model specifications for each 

of the three crops5. Models 1 and 2 provide complementary results, with the estimates of 

model 2 capturing potential significant non-linear relationships. In all models, tests show the 

models are significant in explaining agricultural yields. Adjusted R-squares indicate that the 

explanatory variables explain much of the variation in agricultural yields—about 90 percent 

for wheat, 70 percent for rice and 86 percent for maize. Individual estimates of the 

coefficients of Model 1 can be interpreted as elasticities, but additional calculation is required 

for Model 2. We therefore summarize the estimated elasticities across all models in Table 3. 

Model 1 provides linear elasticities while Model 2 reports nonlinear elasticities, which are 

calculated at the mean value of the corresponding input.  

Table 3 reveals a few intuitive comparisons between the linear and nonlinear estimated 

elasticities. First, as expected, allowing for nonlinearity greatly affects estimated elasticities 

for both the climate and non-climate inputs. In particular, the additive input land area sown 

has different signs across the linear and nonlinear models for wheat and rice. Second, the 

estimated elasticities for climate variables are all statistically significant in the non-linear 

Model 2 while only half of the elasticities in the linear Model 1 are significant at the 5% level. 

Third, when evaluated at the means of variables, the climate inputs consistently have smaller 

                                                 

5 We have considered other non-linear specifications (e.g., cubed), but they did not fit the data as well.  
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elasticities in Model 2 except temperature for wheat where the estimated elasticity is not 

statistically significant at the 5% level in Model 1. Fourth, temperature has larger elasticities 

than precipitation in both models for both rice and maize when evaluated at the variable 

means. 

Table 2. Estimates for Double-log Panel Models of Crop Yields 

 

Wheat Rice Maize 

 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Constant 1.4929** -0.4164 0.1971 -15.480** 5.0312*** 13.9664* 

 

(0.502) (1.644) (1.356) (6.950) (1.367) (7.362) 

       Temperature 0.0118 -1.2289** 0.2914 16.3509*** -1.4964*** -12.322*** 

 

(0.111) (0.623) (0.354) (4.391) (0.367) (4.677) 

       Temperature^2 

 

0.2649**  -2.6389*** 

 

1.7722** 

  

(0.130)  (0.723) 

 

(0.764) 

       Precipitation -0.0589** 2.2389*** 0.0310 0.9584*** 0.0742** 1.1626*** 

 

(0.030) (0.279) (0.037) (0.380) (0.036) (0.369) 

       Precipitation^2 

 

-0.2031***  -0.0742** 

 

-0.0873*** 

  

(0.024)  (0.031) 

 

(0.030) 

       Land -0.0469*** -0.0962*** 0.1323*** 0.3121*** 0.2165*** 0.1535*** 

 

(0.0559) (0.027) (0.018) (0.026) (0.020) (0.049) 

       Land^2 

 

0.0088**  -0.0223*** 

 

0.0027 

  

(0.003)  (0.004) 

 

(0.006) 

       Agri Machine Pwr 0.1508*** 0.2330** -0.1088*** 0.5025*** 0.0704** 0.3814*** 

 

(0.034) (0.120) (0.034) (0.129) (0.034) (0.135) 

       Agri Machine Pwr^2 

 

-0.0054  -0.0434*** 

 

-0.0235*** 

  

(0.008)  (0.008) 

 

(0.009) 

       Irrigated Area 0.2033*** -0.9643** 0.0249 -3.8338*** -0.1668*** -0.3752 

 

(0.039) (0.397) (0.0479) (0.426) (0.040) (0.408) 

       Irrigated Area^2 

 

0.0838***  0.2750*** 

 

0.0144 

  

(0.028)  (0.030) 

 

(0.029) 

       Fertilizer 0.0556*** 0.1268* 0.0551*** 0.0601 0.0149 0.16128** 

 

(0.018) (0.068) (0.018) (0.069) (0.018) (0.072) 

       Fertilizer^2 

 

-0.0077  -0.0027 

 

-0.0166** 

  

(0.008)  (0.007) 

 

(0.008) 

       Employment -0.3965*** -0.3911 -0.0875 -0.3145 -0.0387 1.1552*** 

 

(0.056) (0.262) (0.057) (0.264) (0.057) (0.289) 

       Employment^2 

 

0.0038  0.0231 

 

-0.0906*** 

  

(0.019)  (0.019) 

 

(0.021) 

              F (model) 107.62*** 109.85*** 25.61*** 29.13*** 70.87*** 69.75*** 

       Adj R2 0.895 0.906 0.667 0.719 0.851 0.875 
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N 779 779 750 750 745 745 

              F (province effects) 63.34*** 50.49*** 28.25*** 27.61*** 46.73*** 39.81*** 

       F (time effects) 4.23*** 6.63*** 3.49*** 4.41*** 8.68*** 8.26*** 

       Notes: Dependent variable is crop yield (tons per ha).  Coefficients are estimated elasticities.  Estimates 

condition on province- and time-specific effects with Hausman tests suggesting that a fixed-effects specification 

is appropriate in each case. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Table 3. Elasticities 

 Wheat Rice Maize 

  Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Temperature 0.0118 0.0696 0.2914 0.0250 -1.4964 -1.1932 

Precipitation -0.0589 -0.1452 0.0310 0.0173 0.0742 0.0497 

Area Sown -0.0469 0.0256 0.1323 -0.0030 0.2165 0.1900 

Agri Machine Pwr 0.1508 0.1547 -0.1088 -0.1269 0.0704 0.0406 

Irrigated Area 0.2033 0.2927 0.0249 0.2912 -0.1668 -0.1592 

Fertilizer 0.0556 0.0497 0.0551 0.0331 0.0149 -0.0049 

Employment -0.3965 -0.3373 -0.0875 0.0127 -0.0387 -0.1281 
Note: Italics indicate underlying estimates are NOT statistically significant at the 5% level. 

 

We first review results concerning the climate inputs, focusing on the nonlinear models—

again noting that elasticities are calculated at the mean input value (not its logarithm). The 

temperature estimates indicate that maize yields are markedly responsive to changes in 

temperature, suggesting that a one percent increase in temperature mean will cause a 1.2 

percent decrease in maize yields. Temperature changes have small effects on wheat and rice 

yields, with estimates indicating that a one percent increase in temperatures will result in an 

increase in wheat yields by 0.07 percent and in rice yields by 0.025 percent. For precipitation, 

results show that changes in precipitation levels have a significant impact on the yields of all 

three crops.  Estimates suggest that a one percent decrease in precipitation levels will decrease 

the yields for rice and maize by 0.017 and 0.05 percent, respectively. A bit surprisingly, a one 

percent decrease in precipitation levels will increase wheat yields by 0.15 percent. 



 

 

 

10 

Turning to the non-climate inputs, estimates find that agricultural machine power has the 

expected positive impact on wheat and maize yields with estimated elasticities as 0.15 for 

wheat yield and 0.04 for maize yield. Results however find an unexpected negative 

relationship between agricultural machine power and rice yields. This may indicate that 

agricultural machine power is not a suitable instrument for capital input in rice production 

since the effect should be positive when agricultural machine power takes a smaller value as 

indicated by the linear parameter in Model 2 (Table 2). The same as agricultural machine 

power, the land area sown is found to have the expected positive influence on rice and maize 

yields. Specifically, estimates suggest that a one percent increase in area sown will increase 

rice and maize yields by about 0.02 percent. Results however again find an unexpected 

negative relationship between land area sown and rice yields. However, the elasticity is very 

close to zero, indicating positive relationship when the land area sown takes slightly smaller 

values. Results find that chemical fertilizer has the expected positive impact on the yields of 

wheat and rice and negligible negative impact on maize yield. Estimated elasticities for 

chemical fertilizer are relatively small—around 0.05 for both wheat and rice yields. Results 

offer mixed findings on negative impact of agricultural employment on all crop yields except 

Model 2 for rice. This may attribute to the over-sufficient labor supply in rural China, as 

found by previous studies (e.g., Stavis, 1991; You et al., 2009). Also, estimates suggest an 

expected positive relationship between irrigated area and yields of wheat and rice even though 

an unexpected negative relationship between irrigation area and maize yields. The unexpected 

negative relationship may point to that total irrigated area for all crops is not a reliable 

indicator of irrigated area in maize production. 



 

 

 

11 

3.1 Comparing with other studies 

Table 4 lists the elasticities with respect to climate variables from both our models and other 

studies. The signs of temperature in Model 1 for wheat are on the opposite of the results of 

You et al. (2009). This may be attributed to several reasons. We use longer time series (1980-

2008) than You et al. (1978-2000). In addition, we analyze historical climate data provided by 

the China Meteorological Administration while You et al. use climate data from a dataset 

(CRU TS2.0) at Climate Research Unit at University of East Anglia. The independent 

variables included in the econometric models are also different. Particularly we include 

provincial dummies while You et al. (2009) consider regional dummies in the regression. If 

we replace the provincial dummies with the same regional dummies as You et al. (2009), we 

obtain the same signs for both temperature and precipitation as You et al. (2009). This may 

imply that regional dummies are not plausible since provinces in China generally cover a 

large area with different climate conditions. Even though, for the common non-climate 

variables such as fertilizer and machinery, our Model 1 has the same signs as them and 

particularly for fertilizer, we have almost the same number. 

Table 4. elasticities of climate variables evaluated at means of variables 

Crop Variable Model 1 Model 2 

You et 

al. 

(2009) 
Xin et al. 

(2013)* 

Zhou and 

Turvey 

(2014)** 

Basic model 

Zhou amd 

Turvey 

(2014)** 

Adaptation 

model 

Wheat 
Temperature 0.0118 0.0696 -0.502 -13.05~13.83 0.182 0.142 

Precipitation 0.0589 -0.1452 0.031 -2.84~1.97 0.002 0.022 

Rice 
Temperature 0.2914 0.0250  -20.30~27.07 -0.827~0.159 -1.060~0.801 

Precipitation 0.0310 0.0173  -2.86~7.10 -0.107~0.036 -0.032~-0.023 

Maize 
Temperature -1.4964 -1.1932  -153.79~51.94 -0.0001 0.018 

Precipitation 0.0742 0.0497  -20.39~19.00 0.035 0.004 

* Their elasticities are estimated by season and region for each of the three crops. 

** The dependent variable in their models is value output per area, not yield. They do not estimate elasticities for rice as a 

whole. Instead, they estimate elasticities for each of early indica rice, indica rice, later indica rice and japonica price.  
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A recent study is Xin et al. (2013), who examine the climate impact on crop yield on the basis 

of rural household survey data of three years (2003, 2005, and 2008). They have four seasonal 

independent variables for temperature (or precipitation): spring, summer, fall, and winter. 

They calculate weighted elasticities w.r.t. temperature and precipitation for the whole country. 

However, the calculations are probably problematic. For example, the overall country’s 

elasticity of maize yield w.r.t. precipitation is +1, presented as a weighted average of four 

negative seasonal elasticities (Page 448, Table III, Xin et al., 2013). Based on personal 

communications, a weighted elasticity in Xin et al. (2013) is not obtained directly as a 

weighted average of the elasticities of the four seasons. They first obtain the weighted sum of 

marginal output of the four seasons and then calculated the elasticity at annual basis. In other 

words, they first calculate changes in output by seasons by assuming one per cent changes in 

precipitation for each of the four seasons and then sum by weights the seasonal changes in 

output to yearly change in output. The yearly change in output is interpreted as percentage 

change in output if yearly precipitation changes by one per cent. The interpretation is 

problematic since the one per cent change in seasonal precipitation does not sum up to one per 

cent change in yearly precipitation. Hence, Table 4 lists the ranges of seasonal elasticities by 

regions from Xin et al. (2013). Their results cover broad ranges of elasticities, indicating 

various seasonal climate change impacts on crop yields for an individual household. Besides 

the seasonal and regional variations, the climate impact on a household could to a large extent 

be canceled out by impacts on other households, resulting in small impact at the provincial 

level. 

Zhou and Turvey (2014) also estimate the elasticities of climate variables where the 

dependent variable is crop value output instead of crop yield. Hence, the price effect is 

included in their estimates. Their basic model assumes constant elasticities of climate 
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variables and their adaptation model consider the interaction between climate variables and 

other socio-economic inputs in addition to the constant elasticities. In some cases, elasticities 

w.r.t. climate variables in their adaptation model have different signs from their basic model. 

The signs of the elasticities in our Model 1 are consistent with their basic model for all the 

three crops. 

3.2 Inconstant elasticities with respect to climate variables 

In Model 2, we estimate the inconstant elasticities w.r.t. climate variables, which are not 

discussed sufficiently in the literature. Our Model 2 shows that the estimated elasticities of 

yield with respect to climate variables are highly sensitive to the values of climate variables, 

which is consistent with the non-linear response of agriculture to climate change in USA 

(Schlenker and Roberts, 2009). For example, when the temperature is 10 ºC, only 1.6 ºC 

lower than the average one, the elasticity with respect to temperature becomes negative, the 

same sign as You et al. (2009). This indicates that the constant elasticity assumption is not 

plausible given the high non-linear relations between crop yield and independent variables, 

including both climate and non-climate variables. 

Model 2 indicates that the impact on wheat yield turns from negative to positive with 

increasing temperature. The turning point is around 10.2 ºC (Fig. 1). When a temperature is 

lower than the turning point, an increase in temperature may be bad for wheat yield even 

though the negative impact is diminishing and become positive when the temperature is 

higher than the turning point. It happens that the elasticity with respect to temperature is close 

to zero at the average temperature over the last three decades and can change dramatically 

with a small change in temperature. While slightly negative impact of precipitation is 

obtained with constant elasticity assumption (Model 1), positive impact is possible when 
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precipitation is rather low by Model 2 (Fig. 1). Since the yearly average precipitation during 

wheat growth months is above 350 mm, more precipitation on average is not good for wheat 

yield as indicated by both models even though the negative impact may increase with more 

precipitation. 

   

Fig. 1. Elasticities of wheat yield with respect to temperature (left) and precipitation 
(right) 

 

For rice, the elasticity with respect to temperature is decreasing along with higher temperature 

(Fig. 2). The negative impact on yield happens at high temperature level. An increase in 

temperature is good before reaching an upper temperature bound even though the positive 

impact is diminishing. The turning point is between 22-23 ºC, which is around the average 

temperature over the last thirty years. Hence, an increase in temperature is likely to reduce 

rice yield according to Model 2. On the contrary, an increase in precipitation can probably 

benefit rice production as long as the precipitation is lower than 640 mm per year (Model 2). 

An increase of precipitation can also increase cloud coverage and consequently decrease 

global solar radiation. This can justify the decrease in crop production associated with an 

increase in precipitation when precipitation stays at a high level. 
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Fig. 2. Elasticities of rice yield with respect to temperature (left) and precipitation 
(right) 

 

For maize, higher temperature is always bad even though the negative impact is diminishing 

(Fig. 3). However, more precipitation is always good before reaching a level close to 800mm 

per year, while the average one is lower than 600 mm per year during 1980-2008. 

   

Fig. 3. Elasticities of maize yield with respect to temperature (left) and precipitation 
(right) 

 

Figures 1-3 also show elasticities in two ten-year periods: 1980-1989 and 1999-2008. The 

elasticities with respect to temperature change markedly for all the three crops. For wheat, the 

temperature of the last ten years is about 1ºC more than the first ten years, resulting in over 
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doubled elasticity in the last ten years. For rice, the elasticity changes from positive in the 

beginning period to negative in the last period.  

On the other hand, elasticities with respect to precipitation only change a little since the 

means of precipitation are almost the same in the two periods. However, the elasticities vary 

considerably across provinces. Fig. 4 illustrates how different the elasticities change from one 

province to another. 

 

Fig. 4. the changes in elasticities of wheat yield with respect to precipitation 1999-2008 
compared to 1980-1989. X-axis is codes of provinces in the ascending order of 
precipitation from the left to the right. 
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3.3 Impact on crop yield 

Since the elasticities are changing with climate variables, the elasticity estimated at a given 

level of a climate variable can only indicate the directions and possible impact on yield when 

the change in the variable is marginally small. To calculate impact on yield when the change 

in a climate variable is large, e.g., 5 per cent, we have to derive a formula for the calculation 

of impact on yield. According to our Model 2, we can derive that  

lnYit = α+1
TlnTit +(lnTit)

2+1
rlnRit +2

r(lnRit)
2   (1)  

where Y is crop yield, T is temperature, R is precipitation, and α and βs are estimated 

parameters in Model 2. The equation can be used to calculate crop yield at any reasonable 

levels of climate variables. The difference of crop yields corresponding to any two values of a 

climate variable is the impact of the change in the variable. 

By aggregating gridded data at 10 arc min resolution from an existing downscaling climate 

data set (Hijmans et al., 2005), we obtain monthly climate variables by province for three 

scenarios: current and two representative concentration pathways (RCPs) scenarios (RCP8.5 

and 4.5), where the two RCP scenarios are based on results from a global climate model - 

NorESM1-M (Bentsen et al., 2012). We use the average temperature and precipitation over 

1950-2000 in the current scenario and over 2040-2060 in the two RCP scenarios. Then we 

average the monthly temperature and sum up the monthly precipitation over the crop growth 

seasons to obtain crop-specific temperature and precipitation for the three scenarios. By 

adopting Eq. (1), we estimate the climate change impacts on crop yields. The results show 

that the impacts vary considerably across provinces. However, at the national level, the 

impacts are weak for wheat, modest for rice, and strong for maize (Table 5). In the second 

half of the century, the negative impacts may increase as shown by a recent meta-analysis 
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(Challinor et al., 2014). It seems that climate change may threaten the maize supply 

considerably in the future. However, the impacts are estimated under the assumption of 

constant cropland areas and exclusion of impacts of other socio-economic factors. 

 

Table 5. Climate variable means and impacts on crop yields in the two representative 

concentration pathways (RCP)  scenarios 

 

Crop 

 

Variable 

Mean 
Climate change impact (% of 

current yield) 

Current* RCP8.5** RCP4.5** RCP8.5** RCP4.5** 

Wheat 
Temperature 10.7 13.4 12.7 1.233 0.621 

Precipitation 416.6 444.1 438.2 -1.198 -0.513 

Rice 
Temperature 20.9 23.4 22.9 -4.786 -3.238 

Precipitation 613.7 662.2 645.2 -0.105 -0.078 

Maize 
Temperature 21.7 24.3 23.8 -14.917 -12.732 

Precipitation 561.2 607.2 584.4 0.808 0.305 

‘*’ refers to the period from 1960 to 2000 and ‘**’ the period from 2040 to 2060. 

 

Table 6. Climate variable means and yield changes in the historical periods 

    

Mean Yield change (tons/ha) 

Share of climate 

change impact in 

total (%) 

crop variable 
1980-

1989 

1999-

2008 

Change 

(%) 
Total 

Climate 

change 

impact based 

on Model 1 

Climate 

change 

impact based 

on Model 2 

Based on 

Model 1 

Based on 

Model 2 

Wheat 
Temperature 11.1 12.1 9.5 

1.086 
0.003* 0.014 0.23* 1.31 

Precipitation 339 343 1.2 -0.002 -0.004 -0.15 -0.34 

Rice 
Temperature 21.5 22.7 5.6 

1.437 
0.085* 0.006 5.89* 0.42 

Precipitation 562 564 0.3 0.0004* 0.0003 0.03* 0.02 

Maize 
Temperature 22.5 23.7 5.5 

1.667 
-0.264 -0.199 -15.82 -11.96 

Precipitation 579 570 -1.5 -0.004 -0.002 -0.21 -0.14 

*: indicates underlying estimates are NOT statistically significant at the 5% level. 
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Hence, we turn to historical data to identify the relative importance of climate change impacts 

on crop yields. Table 6 shows the climate variable means and yield changes at the national 

level in the historical periods. The results based on Model 2 show that the temperature 

changes have much stronger impacts on crop yields than precipitation since temperature 

changes at greater percentages from 1980-1989 to 1999-2008. At the national average level, 

the impacts of climate change between the two ten-year periods are positive for both wheat 

and rice but negative for maize. When compared to total yield changes, the climate change 

impacts based on Model 2 account for only small shares for wheat (0.97%) and rice (0.44%) 

but markedly large share for maize (-12.10%). For comparison, we also calculate the climate 

change impacts based on the linear Model 1. The results based on Model 1 tend to markedly 

underestimate the climate change impact on wheat yield while overestimate the impacts on 

both rice and maize. The comparison highlights the importance to consider the nonlinear 

relations between climate variables and crop yields. Since both models indicate that climate 

variables have strong impacts on maize, we will have a closer look at the maize case below. 

Fig. 5 shows calculated maize yield changes due to climate change including both temperature 

and precipitation. At the national level, the maize yield is on average reduced by 6.2 per cent 

due to climate change in the last ten-year period compared to the first ten-year period. 

However, if the elasticities 1980-1989 in Model 2 are adopted alone, the reduction in yield 

would be 7.1 per cent of yearly yield 1980-1989. On the other hand, the yield would reduce 

by 6.1 per cent of yearly yield 1980-1989 if the elasticities 1999-2009 in Model 2 are 

assumed. As contrast, if the constant elasticities in Model 1 are adopted, the yield reduction 

would be as high as 8.3 per cent of yearly yield 1980-1989 (Table 6). 

However, even though the climate change impacts may be negative and considerably strong, 

the impacts of other socio-economic factors are positive and stronger so that the yields of all 
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the three crops have increased considerably. For example, the maize yield 1999-2008 at the 

national level in fact increases by 1.667 tons per hectare, corresponding to 40% of the yield 

1980-1989. 

The other feature observed from Fig. 5 is that the negative impacts due to climate change vary 

considerably across provinces. In most provinces and at the national level, the negative impact 

is mainly attributed to increases in temperature. The precipitation has negative impact on 

maize yield in most provinces and positive impact in several provinces, particularly in 

Xinjiang, Shandong and Henan. 

 

Fig. 5. Calculated changes in maize yield due to climate change 1999-2008 compared 
to 1980-1989. Per cent. 

 

3.4 Impact on crop harvest 

The impact on yield does not mean the same for total harvest since crops are produced 

unevenly across provinces, the average climate situation differs from province to province and 

sown areas also change over time due to changes in climate and socio-economic factors. If 

sown areas are assumed constant, we can multiply the impact on yield with sown area in a 
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province to get the impact on harvest in the province. The sum of the provincial impacts is the 

impact on harvest in the whole country. For example, if the average cropland for maize 1980-

1989 is used, then the climate change leads to a reduction of 6.3 per cent of maize harvest 

1999-2008 compared to 1980-1989 when inconstant elasticities are adopted. On the contrary, 

if the average cropland 1999-2008 is used, the reduction becomes 7.1 per cent of maize 

harvest, wherein 0.8 per cent can be taken the impact of changes in distribution of sown areas 

among provinces. Hence, whether the climate change impact on yield can threaten food 

security also depends on changes in sown areas. 

Particularly if the impacts of other socio-economic factors are included, the crop yields 

increase over the study period as shown in Table 5. Consequently, the harvests of all the three 

crops have increased even though the sown areas of wheat and rice are reduced slightly. The 

maize harvest 1999-2008 is almost double of the harvest 1980-1989 since its sown areas have 

increased considerably. These historical facts remind us that the negative impacts in the two 

RCP scenarios are unlikely to threaten the crop harvests and food security. 

4 Conclusion 

In this paper, we have estimated both constant and inconstant elasticities with respect to 

temperature and precipitation based on provincial panel data in China 1980-2008. In our 

estimates, the constant elasticities are not always statistically significant while the inconstant 

elasticities are always significant at the 1% confidence level. This implies the existence of the 

nonlinear relations between climate variables and crop yields in China. 

We have highlighted the implications of the inconstant elasticities for crop yield. The results 

based on constant elasticities tend to markedly underestimate the climate change impact on 

wheat yield while overestimate the impacts on both rice and maize. Our study shows that 
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climate change impacts on yields of both wheat and rice are small while the negative impact 

on maize yield is marked during 1999-2008 compared to 1980-1989. The impacts on crop 

yields mainly result from temperature increases and marginally from changes in precipitation 

even though the impacts vary considerably from one province to another. 

We emphasize that an elasticity with respect to a given value of a climate variable can only 

indicate instantaneous climate change impact on crop yield when the variable changes 

marginally. A formula has to be used to derive the impact of a climate variable on crop yield 

when a climate variable changes largely such as 5 per cent, which may correspond to one 

Celsius degree change in temperature. 

The implications on food security of the impacts on yields are not obvious since impacts of 

other socio-economic factors may change to meet the demand for food consumption as 

already noticed by You et al. (2009. If the impacts on yields are small, we may not be able to 

observe their impacts on harvest and food security. Historical evidence shows that the positive 

impacts of other socio-economic factors on crop yields and harvests until now have been 

much stronger than climate change variables, leading to more supply in China. The climate 

change impacts can be a problem only if the positive impacts of other socio-economic factors 

become weaker in the future. 
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