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Exposure to fine particles ≤2.5 μm in aerodynamic diameter (PM2.5) from incomplete combustion of solid
fuels in household stoves is recognized as a major contributor to global ill health. Still there are few attempts
to estimate the economic costs and health benefits of interventions to reduce exposure. The objective of this
paper is to estimate costs and health benefits to women of possible interventions to replace current biomass
stoves in Guizhou Province, southwest China, with cleaner burning stoves. Prevalence of chronic obstructive
pulmonary disease (COPD) was measured in women ≥30 y living in households using biomass as fuel. In a
sub-sample of households indoor PM2.5 concentrationsweremeasured. Reduced exposure from replacing stoves
in individual homes and at the community level was estimated using information about stoves, concentration
levels, and time-activity patterns. Annual avoided new cases of COPD were estimated. The economic value of
avoided cases was compared to intervention costs. Probabilistic cost-benefit analysis was performed using
Monte-Carlo simulation and the impact of uncertainty in single parameters was explored. The mean reduction
in annual average PM2.5 exposure is estimated at 127–294 μg/m3, which corresponds to a 41–77% reduction.
Annually 0.6–3.2 new cases of COPD among women may be avoided per 1000 households. The present value
net benefit is 1766–22,500 Yuan (Yuan/USD ≈ 0.16) per household and mean benefit/cost-ratios (B/C) are
3.3–14.7. We conclude that policy interventions to increase access to cleaner burning stoves may bring large
net benefits to rural women and their families, and to society.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

Smoke from household stoves is a major contributor to global ill
health (Lim et al., 2012). Women in developing countries may
spend several hours a day near the stove, exposed to levels of house-
hold air pollution (HAP) that have large impacts on their respiratory
health and may lead to COPD (Kurmi et al., 2010; Po et al., 2011).
COPD is a chronic inflammatory condition of the lower airways. The
basic abnormality in COPD patients is airflow limitation, which causes
shortness of breath, usually accompanied by chronic cough, wheezing,
chest tightness and an increasing disability over time (WHO, 2007).
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A substantial share of the global disease burden linked to HAP
occurs in China (Lim et al., 2012). The burden of COPD is particularly
high. Reported COPD prevalence in China varies between 5% and 13%
in different provinces and cities across the country. In 2008, COPD
ranked third as a cause of death in rural areas. Crude prevalence of
COPD in Chinese women was 3.8%–7.1% in a cross-sectional survey
conducted between 2002 and 2004 and was higher in rural areas
(Fang et al., 2011). A study in South China reported higher COPD prev-
alence among non-smoking women in rural than in urban areas (7.2%
vs 2.5%) (Liu et al., 2007). Tobacco smoking and biomass smoke are
the largest contributors to COPD in China (Lin et al., 2008). Few
women smoke, however. The smoking rate was 2.4% among women
and 52.9% among men in 2010 (Li et al., 2011).

Lin et al. (2008) estimate that halving household solid fuel use in
China by 2033 would reduce the annual number of female COPD
deaths by 12%. In a retrospective cohort study in Yunnan Province a
significant reduction in COPD was observed among people who
changed from unvented stoves to stoves with a chimney. Even though
average PM10 (particles ≤10 μm in aerodynamic diameter) levels
served.
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Fig. 1. Example of a traditional biomass stove often seen in rural households in Guizhou,
China.
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were still high near the stove (710 μg/m3), a significant risk reduction
was observed in women after installation of a chimney (Relative Risk
(RR) 0.75 (95% Confidence Interval (CI): 0.62, 0.92)) (Chapman et al.,
2005). The impact of improved stoves has been found to be higher
when coupled with education and behavioral change (WB, 2007a).

During the 1980s and 1990s the National Improved Stove Program
(NISP) was implemented in China, and a large fraction of biomass
stoves were upgraded to so-called first generation improved stoves,
which in practice meant that the stove had a chimney and a grate. A
comprehensive assessment of NISP found that the thermal efficiency
of rural stoves was only 9–14% (Sinton et al., 2004). Recently, compa-
nies have marketed better stoves, among them a range of cast iron
gasifier and semi-gasifier biomass stoves (Spautz et al., 2006). If proper-
ly used and maintained, and given that they not just add to old stoves,
these second generation improved stoves are expected to result in
reduced HAP and significant health benefit.

In spite of the potentially large health benefit, there are few attempts
to estimate the economic cost and benefit of interventions to promote
cleaner burning stoves. Bruce et al. (2011) summarize previous studies
of costs and benefits of biomass stove interventions, including
community-based studies in Africa and Nepal (Malla et al., 2011) and
a study forWHO regions (Hutton et al., 2006). All studies found benefits
larger than costs. Various health and socio-economic benefits, including
less time spent collecting fuels, are included in these studies and results
are not directly comparable. When estimating impacts on COPD the
studies treated exposure as a dichotomous variable based on fuel statis-
tics (‘exposed’: household solid fuel are used versus ‘not exposed’:
household solid fuels are not used). The fuel-based approach is a
rough approximation applied when exposure measurements are not
available (Smith et al., 2004).

The objective of this paper is to estimate the costs and health bene-
fits among women of replacing current biomass stoves in a rural area
of China with second generation improved stoves. The novelty of our
analysis is that field data on HAP concentrations enables a detailed
exposure assessment. Current COPD prevalence is measured. The
detailed information about current exposure levels and disease preva-
lence together with modeled exposure levels in scenarios allow us to
use exposure–response relationships from epidemiological studies to
estimate health benefits. While a long-term intervention study would
have been ideal, we aim in this paper to improve on the current fuel
based approach by using measurement data for the pre-intervention
stage. In addition, in spite of addressing only one health end-point
among a range of potential health effects, our paper adds a valuable
data point to the scant evidence of the social cost of stove interventions.

Material and methods

Cost-benefit analysis

The essence of cost-benefit analysis is to calculate net benefits
(gross benefits less costs) of an intervention. In our case the interven-
tion is ‘replacing current biomass stoves with second generation
improved stoves’ at the household or community level. Cost equals
the cost of purchasing and installing the stove, plus any fuel and main-
tenance cost over the life-time of the stove. Benefits come in many
fashions, including health benefits and convenience benefits.

As noted we focus here on COPD health benefits among women.
The idea is that demonstrating net benefits based on COPD benefits
among women is sufficient for demonstrating net benefits in general.
The unit of analysis is ‘one household’. We estimate the expected
annual avoided new cases of COPD in women per household and
use valuation methods from economics to estimate the monetized
value of the avoided cases (see detailed method below).

We assume that benefits persist for as long as the improved stove is
in function. If the intervention generates net benefits over this period, a
second round of the same intervention will also have net benefits etc.
Please cite this article as: Aunan K, et al, Upgrading to cleaner household
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Demonstrating net benefits over the life time of the stove is sufficient
for demonstrating net benefits for any length of time.

In order to compare benefits and costs accruing over different time
periods we use a discount rate. The discount rate is higher in a high-
growth economy such as the Chinese. Our real discount rate is 8%. It is
applied equally to benefits and costs. However, economic growth
implies growing valuation of risk. Hence the effective discount rate of
benefits is in fact slightly negative.
Study area

We study villages of Guizhou Province. Guizhou is a mountainous
province of 35 million inhabitants in the southwest of China. Rural
households in Guizhou are poor (net income ~ 500 USD/cap), with
about 50% income share for food (NBS-GZ, 2011). Traditional biomass
stoves are widespread in rural areas and are previously described by
Jin et al. (2006) (Fig. 1). Some households still use open fire. According
to China Census data, 30% of households used coal and 32% used
biomass as their main cooking fuel in 2010. Among rural households
35% use coal and 46% use biomass (NBS, 2012). During 2000–2007,
biomass energy use in households increased from a total of 6.0 Mtce
to 10.1 Mtce (NBS, 2010).
Data collection

An interviewer administered questionnaire was used to collect
information on characteristics of 1200 rural households in 24 villages
where biomass was the main fuel. The survey was carried out during
the period Feb 2009–Jan 2010. Lung function wasmeasured by spirom-
etry. The participants had to perform at least 2 satisfactory maximum
forced expiratory flow-volume curves. COPD was defined as forced ex-
piratory volume in one second over forced vital capacity (FEV1/FVC)
below 0.7 based on post-bronchodilator measurements (Celli et al.,
2004). 0.6% were cigarette smokers and were excluded from the analy-
sis. COPD prevalence and odds ratios (OR) were estimated on a sample
of about 850 participating women ≥30 y of age (Alnes et al., 2011).

In a subsample of households (110 in winter and 117 in summer),
measurements of indoor concentrations of PM2.5 were carried out for
48 h using the particle and temperature monitor UCB-PATS (Edwards
et al., 2006). The monitor has been used in multiple studies in devel-
oping countries (Armendariz et al., 2008; Chowdhury et al., 2007).
The monitors were placed in the kitchen and living room. Details
about the study on air pollution measurements are reported else-
where (Alnes et al., 2013).
stoves and reducing chronic obstructive pulmonary disease among
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Scenarios for two groups of households

Two groups of households were identified. In ‘No-chimney’ house-
holds at least one open fire and/or a stove without chimney was
present. In ‘Chimney’ households all stoves had a chimney and usually
a grate. The prevalence of COPD among women was higher in
‘No-chimney’ than in ‘Chimney’ households (OR = 3.48 (95% CI: 1.02,
11.90), p = 0.047, adjusted for age, socioeconomic status and ventila-
tion). A prevalence of 4.6% and 1.4% for the two groups, respectively,
is used below. Whereas 4.6% is the measured prevalence in
No-chimney homes (the largest group), 1.4% is calculated for Chimney
homes using the adjusted OR in order to compare groups with the
same demographics (the measured prevalence was 1.7%). Mean PM2.5

concentrations in ‘No-chimney’ household kitchens were significantly
higher than in ‘Chimney’ household kitchens in summer, but not in
winter (see Table 1 for concentration levels by room and season).

We develop two scenarios. Scenario 1 assumes that individual
household upgrades to cleaner-burning stoves (henceforth second
generation improved stoves). Scenario 2 assumes that whole commu-
nities upgrade to second generation improved stoves and establish a
system for providing suitable biomass fuels (pellets). As described
belowwe assume that the pellet stoves in the community level scenario
have lower emission factors than stoves in the individual scenario. We
assume that fuel use is constant in the scenarios. This means that any
improvement in thermal efficiency will not result in lower fuel use; in
other words a 100% rebound effect. This is based on the observation
that mean living room temperature during the winter was low (12.0
(±4.6)°C), and we believe any fuel saved will be used for heating. To
avoid speculations about the magnitude of the rebound effect in sum-
merwhen heating is not needed, and themixed evidence for fuel saving
from stove efficiency improvements (Chen et al., 2006; Nepal et al.,
2010), we assume no fuel saving in summer either.

Each scenario is divided into two sub-scenarios (a and b);
depending on whether it is ‘No-chimney’ or ‘Chimney’ households
that upgrade their stoves. We assume that all stoves within a house-
hold are replaced by year 1 and that the new stoves are properly used
and maintained. Finally, we assume that there are no other major
sources of PM2.5 indoors apart from household fuel combustion. This
assumption allows us to approximate post-intervention concentration
levels from the relative emission strength of stoves.

Exposure assessment

The detailed methods and parameters to estimate PM2.5 exposure
pre- and post-interventions are as follows:
Table 1
Central estimates of concentration levels applied in the exposure assessment,
μg/m3 PM2.5. (SE given for concentration levels based on measurements). See Table 3
for Scenario descriptions.

Winter Summer

Before
intervention

Scen 1 Scen 2 Before
intervention

Scen 1 Scen 2

Mean kitchen when stove in use (Ckcook)
No-chimney 2939 (±382) 1503 567 1470 (±224) 369 139
Chimney 2781 (±550) 1503 567 683 (±274) 369 139

Mean kitchen (Ck)
No-chimney 783 (±96) 424 178 407 (±56) 132 71
Chimney 741 (±138) 422 178 210 (±69) 131 71

Mean living room (Ci)
No-chimney 398 (±66) 246 126 210 (±37) 76 48
Chimney 428 (±115) 243 126 120 (±30) 75 48

Baseline (Cbl = C0)
No-chimney 64 (±1) 64 48 53 (±1) 53 48
Chimney 61 (±3) 61 48 52 (±2) 52 48

Please cite this article as: Aunan K, et al, Upgrading to cleaner household
women in rural China — A cost-benefit analysis, Energy Sustain Dev (201
Following Mestl and Edwards (2011) who use time activity data
from the NISP survey andWang et al. (2008), exposure was estimated
for each type of household:

E′ ¼ Tcook � Ckcook þ Tk � Ck þ To � Co þ Ti � Cið Þ= Tcook þ Tk þ Ti þ Toð Þ½ �
ð1Þ

where Tcook is the time spent in kitchen while cooking (2.2 (SD 1.4)
hours). Ckcook is the kitchen concentration when stove is in use, i.e.
the average concentration during a cooking episode including smol-
dering. Tk is the time spent in kitchen when not cooking. The total
time spent in kitchen is 2.5 (SD 1.9) hours. Expected time in kitchen
while not cooking is therefore Tk = 0.3 h. Ck is the mean 48-hour
kitchen concentration. To is the time spent outdoors (7.6 (SD 2.2)
hours). The ambient concentration, Co, is estimated using the kitchen
time series measurements. Dwellings in the study area are drafty and
it is assumed that the kitchen nighttime concentration drops to the
ambient level. Co is estimated asmeanminimumkitchen concentration,
which was 61(52) and 64(53) μg/m3 in winter (summer) in Chimney
and No-chimney homes, respectively. Ti is remaining time spent
indoors, Ti = 24-Tcook-Tk-To. Ci is 48-hour mean concentration in the
living room. E′ reflects 24-hour average exposure, a proxy for average
longer-term exposure.

Stove use episodes (i.e. when concentrations exceed 300 μg/m3)
occur about 25% of the time. The remaining 75% of the time the kitchen
concentration is conservatively assumed to equal C0 (Supplemental
material, Fig. S1). Thus, using the measured Ck for each household,
Ckcook was estimated from:

Ck ¼ 0:25�Ckcook þ 0:75�C0: ð2Þ

E′ was calculated for winter and summer months separately.
When calculating the annualweighted average exposure, E, we assume
that winter and summer exposure last 5 and 7 months, respectively.
The pre-intervention frequency distribution for E was derived based
on Eqs. (1) and (2) and measurements.

Eq. (1) is used to calculate post-intervention exposure assuming
that the time activity pattern is unchanged. We assume that post-
intervention Ckcook is a normally distributed stochastic variable.Within
each scenario Ckcook in No-chimney homes is the same as in Chimney
homes, since the new stoves introduced are identical. A change in Ckcook
is what drives the post-intervention exposure reduction in our model.
In Scenario 1 (individual upgrade) we estimate that expected Ckcook is
reduced to 54% (95% CI: 44%, 64%) of the initial Ckcook of ‘Chimney’
households. The estimate is based on data compiled for China in the
GAINS database (‘UNEP_IEA09_REF’ scenario) (IIASA, 2012), which
shows that the ratio between PM2.5 emission factor for ‘new’ versus
(first generation) ‘improved’ cooking and heating stoves burning agri-
cultural residues and wood is 0.54 (0.44, 0.64). The 95% CI is based on
the ranges of ratios of emission factors in the GAINS database. The aver-
age emission factors for ‘new’ and ‘improved’ stoves in GAINS are 1.7
and 3.15 g PM2.5/kg fuel, respectively, the former being close to the
emission factor for the Rocket stove as estimated by MacCarty et al.
(2008). We denote the expected ratio 0.54 RScen1.

In Scenario 2 (community upgrade) we estimate that expected
Ckcook is reduced to 20% (95% CI: 10%, 30%) of the initial Ckcook of
‘Chimney’ households. This is based on the ratio of 0.20 (0.10–0.30)
between the PM2.5 emission factor for ‘pellet’ stoves in the GAINS data-
base (0.64 g PM2.5/kg fuel) versus ‘improved’ stoves. We denote the
expected ratio 0.20 RScen2. The use of emission factors to derive RScen

estimates is obviously a rough approximation, and the uncertainties
involved are discussed below.

In Scenario 1 C0 is unchanged as individual stove switching does not
affect ambient pollution levels. In Scenario 2 we assume that ambient
pollution is reduced due to the ubiquitous stove replacement, and C0
is set to 48 μg/m3 PM2.5. This level is the median kitchen minimum
stoves and reducing chronic obstructive pulmonary disease among
3), http://dx.doi.org/10.1016/j.esd.2013.06.002
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concentration in summer when stoves are not in use. We believe that it
represents the ambient concentration without major household fuel
pollution sources (note that rural background levels of PM2.5 in China
typically exceed 40 μg/m3 (Yang et al., 2011)). Ck, the mean concentra-
tion in kitchen, is estimated using Eq. (2), and Ci, the mean concentra-
tion in living room, is estimated assuming the same percentage
reduction in the living room as obtained for Ck. Concentration levels
applied in the exposure assessment are shown in Table 1 (see Supple-
mental material, Table S1, for PM2.5 measurement data).

Health damage assessment

We use the relative risk (RR) function to estimate the expected
annual avoided new cases of COPD in women of reducing exposure:

RR ¼ exp βΔEð Þ: ð3Þ

ΔE is current E minus E after intervention and β is the exposure–
response (E–R) coefficient. We use a β of 0.0048 (95%CI: 0.0040–
0.0056) estimated for long-term PM10 levels and prevalence of chronic
bronchitis (CB) in adults based on cross-sectional questionnaire surveys
in urban and suburban areas in China (Aunan and Pan, 2004). We
assume that the effect estimates for CB are similar to the effect estimates
for COPD (see discussion below). A similar β of 0.0045 (95% CI: 0.0015–
0.0074) is estimated for CB in Kan et al. (2005). Due to the limited
sample size we choose not to use the considerably higher β that may
be derived from the observations in the current study. Note that our
RR is stochastic since both β and ΔE are stochastic. We convert PM2.5

exposure to PM10 using the measured ratio between the two compo-
nents in wood burning homes, 0.89 (95%CI: 0.80–0.98) (Zhang et al.,
2011).

By definition

RR ¼ p=p0: ð4Þ

p is the annual incidence rate in a polluted environment, p0 is the
annual incidence rate in a cleaner environment. Given p Eqs. (3) and
(4) give p0.

AC ¼ p−p0ð Þ�P ð5Þ

Given p, p0 and P Eq. (5) gives AC (attributable cases), the number
of cases attributable to ΔE. P is the average number of women per
household in Guizhou, 1.39 (GSB, 2008). AC therefore indicates the
number of cases per household.

To estimate p we assume steady-state pre-intervention conditions
and divide current prevalence (4.6 or 1.4%, see above) with the average
duration of ‘aged chronic bronchitis’ cases in people > 25 years of age
in China, 16 years, to obtain an annual incidence rate of 0.0029 and
0.0009 for women in ‘No-chimney’ and ‘Chimney’ households, respec-
tively. Duration was estimated from data for the Chinese population
for 2003, see WB (2007b). Including only people > 35, average dura-
tion is reduced to 14 years.

COPD is a progressive disease perceived to be irreversible, and the
relationship between exposure and incidence is complicated. Given a
stable annual incidence rate a simplified model consistent with
instantaneous impact in the population is the following: Assume that
T years of exposure lead to COPD. Assume that the intervention is
implemented following T-1 years of exposure for individuals who are
on the brink of developing the disease (the annual incidence popula-
tion). The impact will then be instantaneous for this group. Backed by
this argument and in line with others (Wilkinson et al., 2009) we
assume an instantaneous reduction of incidence in response to
improved stoves.

If health status reacts more strongly to recent exposure our model
will underestimate the true response to improved stoves. On the
other hand, if health status reacts with a lag as if some threshold is
Please cite this article as: Aunan K, et al, Upgrading to cleaner household
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needed for a discernible effect, our model will overestimate the true
response, see Rabl (2006). Discounting also matters for the question
of over- versus underestimation. If the true effect of an intervention
in year one is postponed to year two or three, the error of assuming
the effect in year one will be proportional to the real discount rate
(r–g in the language below). Chapman et al. (2005) found that the
risk of COPD was reduced unequivocally about 10 years after installa-
tion of a chimney. However, they also found that therewas an increased
risk just after the chimney was installed, which they speculate could be
related to a biased selection of people choosing to install a chimney.
Thus, while indicating a delayed effect, their results do not provide a
quantification of this delay. Below we present sensitivity estimates for
a simple alternative model where the response is delayed. Note that
we do not include the likely benefit from HAP reductions in women
who already have COPD. Studies of tobacco smoke cessation show
that lung function decline in COPD patients is attenuated in quitters
and symptoms of cough, phlegm and wheeze are reduced. Improve-
ments are found from year one after quitting (Scanlon et al., 2001).

Monetized benefits

The individual benefit of lowering the incidence of COPD consists of
two kinds. One is treatment expenses saved. The other is the benefit of
lowering the individual risk of contracting COPD. Treatment expenses
are incurred in order to reduce the cost of living with COPD. In this
sense they are second order in nature.

Contracting and living with COPD reduce physical capabilities and
increase the risk of premature death. The risk of contracting and living
with COPD is therefore similar in kind to the risk of premature mortal-
ity. The valuation literature in economics makes use of this property.

To monetize AC we use the present value (PV) formula:

Benefit ¼
XN

t¼0

ACγ VSLo 1þ gt
� �

1þ rð Þt : ð6Þ

VSL is value of statistical life, a metric of the willingness to pay for
lower mortality risk. g is the growth in VSL over time. r is the discount
rate. N is the number of years the stove is expected to last given normal
maintenance. We assume that the risk of contracting COPD is valued at
γ = 32%ofmortality risk (VSL) (Viscusi et al., 1991). The original article
asked for risk-risk valuation of a case of severe chronic bronchitis. Note
that this is the value of living with the disease for the rest of one's life.
Values are in 2010 price level.

There is a sizable literature on the VSL in Europe and the U.S.A, and
some from China. Guo and Hammitt (2009) study risk preferences of
10,000 urban workers in China as revealed from their willingness to
take on risky work in return for a higher wage. They find VSL to be
33–150 times annual earnings. Hammitt and Zhou (2006) do a contin-
gent valuation survey of 3200 residents of Beijing and Anhui Province
and find VSL to be 10–200 of earnings. Wang and Mullahy (2006) per-
form a contingent valuation survey of 500 residents of Chongqing and
find VSL to be 70 times earnings. Based on evidence like this and the
international literature Aunan et al. (2004) and Vennemo et al. (2009)
have suggested that a Chinese VSL is approximately 50–150 times
earnings, with 100 as a middle estimate.

Our analysis assumes a normal distribution for VSL with mean 100
(95% CI: 50, 100). For GDP/capitawe consider two alternatives, national
GDP/capita (30,000 Yuan in 2010) and Guizhou Province GDP/capita
(13,000 Yuan). Yuan/USD ≈ 0.16. There are arguments for using the
national value (e.g., all inhabitants should be treated equal) but also
for using the province value (e.g., consistency with provincial prices
and incomes). We assume a binominal distribution with p = 0.5 for
13,000 and (1-p) = 0.5 for 30,000. The expected value of VSL is
2.15 million Yuan.
stoves and reducing chronic obstructive pulmonary disease among
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Table 3
Expected health benefit in the scenarios (number of annual cases and present value
(PV) in 2010 Yuan). 95% CI in parenthesis. (1 Yuan ≈ 0.16 US$).

Annual avoided new cases of COPD
in women per 1000 households

PV of avoided cases per
household (2010 Yuan)

Scen 1aa 2.63 (2.23, 2.99) 11,551 (4735, 21,000)
Scen 1bb 0.58 (0.43, 0.73) 2566 (1012, 4807)
Scen 2ac 3.18 (2.85, 3.46) 24,189 (10,685, 41,485)
Scen 2bd 0.82 (0.67, 0.95) 6241 (2719, 10,849)

a Scenario 1a: Individual households switch from No-chimney stove to Second
generation improved stove.

b Scenario 1b: Individual households switch from Chimney stove to Second generation
improved stove.

c Scenario 2a: Community level switch from No-chimney stove to Second generation
improved stove (pellets).

d Scenario 2b: Community level switch from Chimney stove to Second generation
improved stove (pellets).
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There is reason to believe that VSL grows faster than income
(Hammitt and Robinson, 2011). We use an income elasticity of 1.5
(95% CI: 1.0, 2.0). Given 6.5% annual growth in GDP/capita, which is
planned for the 12th five year plan period the parameter g is 9.8%.
The discount rate r is 8%.

Our estimate of benefit excludes convenience benefits from
improved stoves. By restricting the analysis to women we exclude
the benefit to men and children. The estimate excludes treatment
expenses. A sensitivity analysis examines the impact of valuing
COPD risk in terms of treatment expenses only.

Intervention costs

Data and parameters used to calculate investment andmaintenance
costs of stoves are as follows. Based on own survey data we assume that
biomass fuel is free. We do not include any value of savings in time
searching for fuel as we assume 100% rebound (see above). A single
household upgrading its stove (Scenario 1) must use a stove with
simple fuel input requirements. Examples are the Shengchang and
Guanglei CSX series (Dou, 2011; Zhou, 2009). These stoves sell for 200
(100–300) Yuan, a range also reported elsewhere (WB, 2007a). Due
to the low capacity of such stoves a household will need two stoves.
An estimated 100% surcharge covers costs of transportation, installation
andmaintenance, thus full cost per household is estimated at 800 (400–
1200) Yuan. The stoves are assumed to have a life time of 6 (4–8) years
(Zhou, 2009).

In a community program households may use a stove with higher
operational requirements. An example is the Daxu stove of Beijing
Shenzhou Daxu Bio-energy Technology Company that won the
Shell/CAREI competition and the Ashden Awards for Sustainable
Energy (Ashden, 2013). It requires a stable supply of pellets, most com-
monly organized by establishing a pelleting plant in the community;
and is fitted to the home by a company representative. The Daxu
stove comes in different varieties. We use a 1300 Yuan (650–1950)
stove for cooking and household supply of hot water as our example
(Han, 2010). One such stove is needed. Its life time is 10 (8–12) years.
An estimated 30% surcharge to cover transport, maintenance, the
household share of the pelleting plant investment, and program costs
are added, thus full cost per household is estimated at 1690 (845–
2535) Yuan.

Monte Carlo simulation and sensitivities

We estimate net benefits and B/C-ratios of interventions using
Monte Carlo simulations and the distributional assumptions given
above. The number of random draws in the Monte Carlo simulation
is one million.

By testing the sensitivity of results to a ±20% change in key input
parameters we also explore the impact of uncertainty in single
parameters.

Results

Pre-intervention mean exposure is 381 (SE 29) and 308 (SE 40)
μg/m3 PM2.5 in No-chimney and Chimney homes, respectively
(Table 2). The mean reduction in PM2.5 exposure in the scenarios (ΔE)
Table 2
Annual mean PM2.5 exposure (SE) for women living in ‘No-chimney’ and ‘Chimney’
homes and estimated reduced exposure (ΔE) after individual (Scenario 1) or commu-
nity level (Scenario 2) upgrade to ‘Second generation improved stove’ (μg/m3).

E before intervention ΔE Scenario 1 ΔE Scenario 2

No-chimney Chimney No-chimney
(a)

Chimney
(b)

No-chimney
(a)

Chimney
(b)

381 (±29) 308 (±40) 198 (±21) 127 (±22) 294 (±25) 221 (±31)
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ranges from 41% to 77% of pre-intervention exposure (Table 2). Annual
avoided new cases of COPD among women, in physical and monetary
terms, are given in Table 3. Net benefit and B/C ratios are given in
Table 4. The present value net benefit is in the range 1766–22,500
Yuan per household across the four scenarios (Yuan/USD = 0.16).
The simultaneous probability for positive net benefit is 99.0–99.99%
depending on scenario (Supplemental material, Fig. S2). Net benefit is
higher when the intervention targets No-chimney homes (a scenarios)
than Chimney homes (b scenarios). This is reasonable since the
pre-intervention status is much worse in No-chimney homes. Net
benefit is higher in the community level scenario (Scenario 2) than
the individual stove switch scenario (Scenario 1). This is less evident:
Benefits are higher in Scenario 2 since the new stoves have lower emis-
sions, but on the other hand, costs are higher. The highest B/C ratio is
found in Scenario 1a.

We tested the value of input parameters that would result in zero
net benefit (other parameters unchanged), and found that for all pa-
rameters this value was outside their 95% CI. RScen1 and RScen2 are core
input parameters as they directly affect ΔE. We find that applying the
upper 95% CI (i.e. lowest effect of intervention) while keeping other
parameters constant, results in onlymoderate reductions in net benefit,
maximum 24% (in Scenario 1b). ΔE may in fact be as low as 9 μg/m3 in
Scenarios 1a and 2a, 32 μg/m3 in Scenario 1b, and 39 μg/m3 in Scenario
2b before net benefit becomes zero, much lower than the lower 95% CI
of ΔE in our simulation (Table 2). The VSL value that gives zero net
benefit was maximum 31% of the central estimate in all scenarios. Cor-
respondingly, the E–R coefficient that gives zero net benefit was 4–24%
of the central estimate depending on scenario. The sensitivity of net
benefit estimates was largest for life-time of intervention, VSL, and
baseline COPD prevalence. Sensitivities were largest for the Chimney
home Scenarios 1b and 2b. See Supplemental material, Fig. S3, for
one-way-sensitivity tests.

We investigate whether the stove intervention could be justified
in terms of saved treatment expenses only. Fang et al. (2011) esti-
mate direct and indirect expenses of a case of COPD in China to be
1964 USD/yr. In discounted terms this equals 176,000 Yuan per case
(average duration of a case is 16 years, see above). Expenses included
are direct medical expenses, dietary supplements, transportation, and
end-of-life care. Applying this estimate (while not changing other
Table 4
Expected present value of net benefit (PV) per household (2010 Yuan) and B/C ratios
for the scenarios. 95% CI in parenthesis. Scenario descriptions, see Table 3.

Net benefit (2010 Yuan) B/C-ratio

Scen 1a 10,751 (3931, 20,203) 14.7 (5.8, 28.0)
Scen 1b 1766 (195, 4015) 3.3 (1.2, 6.4)
Scen 2a 22,500 (8983, 39,800) 14.5 (6.2, 26.0)
Scen 2b 4551 (1004, 9173) 3.7 (1.6, 6.8)

stoves and reducing chronic obstructive pulmonary disease among
3), http://dx.doi.org/10.1016/j.esd.2013.06.002
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parameters) we obtain slightly positive net benefit estimates in the
scenarios addressing No-chimney homes, but negative estimates for
Chimney homes. Net benefit in Scenario 1a becomes 150 Yuan (B/C
ratio 1.19); in Scenario 2a 299 Yuan (B/C ratio 1.18).

We investigated how an alternative simple model assuming a
delayed impact on annual incidence rate from instantaneous exposure
reductions affects our results. If the estimated reduced annual incidence
rate as calculated in the main model is reached not after one year but
after 10 years, and the realization of annually avoided new cases is
linearly distributed from year 1–10, the net benefit is reduced by 69%,
94%, 47%, and 60% in Scenarios 1a, 1b, 2a, and 2b, respectively. B/C ratios
become 5.1, 1.1, 8.0, and 2.1, respectively. Note that as the life-time of
Scenarios 1a and 1b is six years, full effect is not reached over the course
of the project period. If full effect is reached after 5 years and the effect
is linearly distributed from years 1–5, the net benefit is reduced by 35%,
47%, 20%, and 26% in Scenarios 1a, 1b, 2a, and 2b, respectively. B/C ratios
become 9.7, 2.2, 11.5, and 3.0, respectively.

The health benefits per household in Scenarios 2a and 2b may
be scaled up to a province level. In 2010, 3.47 million households in
Guizhou Province had biomass fuels as their main cooking fuel (94%
of these are in rural villages) (NBS, 2012).We do not know the distribu-
tion of ‘No-chimney’ and ‘Chimney’ households in Guizhou and can only
roughly estimate the range of total health benefit. For the lower bound
we assume that all are ‘Chimney’ households. For the upper bound we
assume that 85% are ‘Chimney’ households. This yields a range of
2870–4100 avoided new cases of COPD annually in Guizhou Province.
The estimated net benefit is 12–25 billion Yuan, corresponding to 2%–
4% of Guizhou's Regional Domestic Product in 2011.

Discussion

We find that upgrading current stoves in both No-chimney and
Chimney households to second generation improved stoves would
yield net benefits to society. The conclusion is robust to major alter-
ations in input parameters and confirms previous studies in other
settings using other methods and data (Bruce et al., 2011). The fact
that we only include avoided COPD in women in our analysis implies
that the health benefit may be substantially underestimated as there
is evidence for effects of indoor air pollution in a range of other
end-points and also in men and children (Po et al., 2011; Smith and
Peel, 2010).

Expected exposure reductions (41%–77%) are comparable to previ-
ous estimates. Jiang and Bell (2008) find that personal PM2.5 exposure
for urban cooks in homes using a combination of electricity and natural
gas on average was 69% lower than for rural cooks in homes using
biomass. Practical intervention studies indicate a 35–50% reduction in
personal PM2.5 exposure from stove interventions (switch to biogas
stoves excluded). In these studies the percentage reduction in personal
exposure is typically about half the percentage reduction in indoor
PM2.5 concentration (Armendariz et al., 2008; Hutton et al., 2006;
Malla et al., 2011; Naeher et al., 2000). A possible explanation for the
discrepancy in effect (exposure vs concentration) could be that there
are other important sources of PM exposure, e.g., outdoor sources. As
noted by Johnson et al. (2011), outdoor sources have only little impact
on indoor concentrations for traditional stove users, but the relative
contribution is likely to increase in homes using cleaner stoves.
Regarding CO, for which there may be fewer large outdoor sources,
Armendariz et al. (2008), Malla et al. (2011), and Naeher et al. (2000)
all find that the percentage reduction in personal exposure from
stove interventions is close to the percentage reduction in kitchen
concentration.

RScen1 (44%–64%) and RScen2 (10%–30%) are derived from emission
factor ratios and used to estimate the reduction in kitchen concentra-
tion during cooking. We acknowledge the large uncertainties in emis-
sion factors for biomass stoves (Zhang et al., 2009). The emission
factors applied in the current paper are taken from the widely applied
Please cite this article as: Aunan K, et al, Upgrading to cleaner household
women in rural China — A cost-benefit analysis, Energy Sustain Dev (201
model GAINS, and are mainly derived from laboratory studies.Whether
laboratory studies reflect a field setting is uncertain and difficult to fully
take into account in the analysis. Further complicating the matter, a
range of test protocols exist that may give diverging estimates
(Johnson et al., 2007). Equally important as the emission factors per
se, and also adding uncertainty which is not explicitly quantified in
our analysis, is the fraction of stove emissions that is vented outdoors
through the chimney, eave gaps or other leakages in the house before
theymix throughout the room. Regarding the kitchen concentration re-
ductions obtained by our model, these may be compared with the
model experiment by Johnson et al. (2011), in which it is also assumed
that stoves are the only source of PM2.5. They estimate that for a defined
cooking task, kitchen 24-h mean PM2.5 concentration (comparable to
our Ck) is 36–83% lower when a Rocket stove is used compared to an
open fire (the range depends on test conditions for input data). In our
modelwe arrive at a 48% and 68% reduction in Ck inwinter and summer,
respectively, for No-chimney homes in Scenario1 (i.e. switch to a stove
with emissions similar to a Rocket stove), thus in the middle of the
model results of Johnson et al. (2011). In absolute terms, bothmeasured
andmodeled Ck for No-chimney and Rocket type stove homes are lower
in our study than in Johnson et al. (2011). An intervention study in
Nepal replacing traditional mud stoves with improved mud stoves
found that mean kitchen PM2.5 concentration was reduced by 52–71%
across the regions included (Singh et al., 2012). In a previous field
based study in Guizhou Province we found that during biogas burning,
kitchen concentrations were around 70% lower than during
no-chimney wood combustion (Wang et al., 2010). Our model renders
an 81–91% reduction in Ckcook for a switch from No-chimney to pellet
stove in winter and summer, respectively. This may seem high com-
pared to the field based results for biogas, but on the other hand applies
to ideal setting with no other major PM2.5 sources. Note that the PM2.5

emission factor for pellet stoves in GAINS is 91% lower than the average
emission factor for biomass burned in old stoves (‘No control’) and open
pits.

The assumption that time-activity is constant before and after
intervention may be questioned. If women spend less time collecting
fuel wood, the rebound effect is lower, but more time may be spent
indoors. Use of second generation stoves may require a more active
attending of the fire (Barnes et al., 1994). This implies that women
spend more time close to the stove, where the exposure is highest.
If that is the case, assuming constant time-activity could lead to
overstated health benefits.

Onemay question the use of the E–R relationship for CB and ambient
particulate air pollution to estimate impacts of HAP on COPD.We deem
the application of the E–R relationship justifiable in the current paper
based on the following. Whereas no studies have established the E–R
relationship for COPD prevalence and particulate pollution in China,
the odds ratios for COPD and CB prevalence are shown to be quantita-
tively similar in studies of solid fuels (Kurmi et al., 2010). The close
link between the two health end-points is indicated by the fact that
most people who have COPD also have chronic bronchitis (US-NIH,
2010). A study of the 30-year cumulative incidence of CB and COPD
related to tobacco smoking showed that half of the smokers who had
CB also acquired COPD over time (Pelkonen et al., 2006). Regarding
the use of ambient air pollution epidemiology, we rely on WHO
(2010) stating that there is “no convincing evidence of a difference in
the hazardous nature of particulate matter from indoor sources as com-
pared with the outdoors”. Transferring the E–R coefficient for ambient
air in Chinese settings (where PM2.5 levels were up to about 200–
250 μg/m3) to the integrated indoor and ambient exposure may thus
be justified if a proper exposure assessment is carried out.

Some studies of cardiopulmonary mortality impacts of PM2.5 expo-
sure suggest a nonlinear exposure–response function that is relatively
steep at low exposures and levels off at higher exposures (Pope et al.,
2009). An E–R relationship that flattens renders smaller health benefits
of interventions in very polluted environments compared to a similar
stoves and reducing chronic obstructive pulmonary disease among
3), http://dx.doi.org/10.1016/j.esd.2013.06.002
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intervention in less polluted environments. While no studies are avail-
able to directly verify a flattening E–R curve for COPD, E–R coefficients
for CB reported in Western countries, where air pollution levels are
much lower than in China, are considerably higher than the coefficient
used in the current paper (see Aunan and Pan (2004) for comparisons).
In a cohort study in Germany, Schikowski et al. (2010) report that the
prevalence of mild and moderate COPD (diagnosed from lung function
measurements) in non-smoking elderly women was reduced by about
3.0% per μg/m3 reduction in PM10 (5 year mean). PM10 was 47 μg/m3

in the baseline period and 27 μg/m3 in the follow-up period. As a com-
parison, the β applied in the current paper renders a change in preva-
lence of 0.5% per μg/m3 PM10. This β results in mean RR estimates in
Scenarios 1a (switch from No-chimney to new improved stove) and
2a (switch from No-chimney to pellet stove) of 2.94 [95% CI 2.24–
3.91] and 4.96 [95% CI 3.43–7.20], respectively. These values seem low
compared with the empirical adjusted OR between ‘No-chimney’ and
‘Chimney’ groups (see above) of 3.48 [95% CI 1.02–11.90], particularly
for Scenario 1a. Consequently, we may in fact have underestimated
risk reductions.

Pre-intervention prevalence rates in our study are low compared
to the literature, and we suspect that a possible selection bias may
have led to an underestimation of prevalence (Alnes et al., 2011).
The assumption of 100% rebound is conservative, i.e. we may under-
estimate the benefit of stove interventions. The assumption that old
stoves are abandoned and new stoves are properly maintained may
on the other hand overestimate the real world benefit.

In lack of verified models to treat the time-dependency of the
response in COPD incidence rate to reduced PM2.5 on a population
level, we assume that the reduced incidence rate is obtained from
year 1. This is based on the assumption that the intervention may
prevent individuals who are on the brink of developing the disease
actually doing so. While this model entails a crude simplification, and
a compromised lung function will continue to decline, lung function
decline in individuals who do not yet fulfill the COPD diagnosis criteria
is likely to happen at a slower rate given reduced exposure, as has been
shown to be the case in patients with a COPD diagnosis (Scanlon et al.,
2001).

In the current paper we model health benefits from stove inter-
ventions in an idealized setting. Still, given the above discussion,
there is in our view no convincing evidence for a bias in either direc-
tion when it comes to the estimated costs and benefits. To confirm
how improved stoves affect indoor PM concentrations and exposure,
monitoring over the lifetime of an intervention is needed. Issues of
compliance (i.e., to what extent old stoves are abandoned), mode of
stove use, type of food cooked, and properties of fuel used, will affect
actual exposure. As pointed out by others, “fuel stacking”, in which
new technologies and fuels are added to base, is a realistic possibility
unless countermeasures are taken (Ruiz-Mercado et al., 2011; Sinton
et al., 2004). Costs and technical problems as well as cultural prefer-
encesmay hamper the uptake of cleaner technologies andmust be care-
fully addressed (Peng et al., 2010; Pine et al., 2011). Stove and fuel
switch programs need to be carefully designed to take into account
local conditions regarding cooking andheating practices, fuels available,
and levels of affordability. Practical field intervention studies are
required to better understand and quantify feasible exposure reduc-
tions and health benefits in poor rural biomass dependent households.

Conclusions

There are large net benefits to be gained from upgrading household
stoves in rural areas in Guizhou Province. We find that annually 0.6–2.6
new cases of COPD in women can be avoided per 1000 households in
individual households that upgrade to second-generation improved
stoves a la Rocket stove or similar. Correspondingly, 0.8–3.2 new cases
of COPD in women can be avoided per 1000 households given commu-
nity level upgrade to pellet stoves or other stove types with similar
Please cite this article as: Aunan K, et al, Upgrading to cleaner household
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emissions. For the quantitative results to be valid, new stoves have to
yield exposure reductions as described in the scenarios, i.e. reduce the
PM2.5 exposure with 41% to 77% of pre-intervention exposure. Consid-
erably smaller reductions still yield B/C ratios above unity. While
there are inherently large uncertainties in the calculations, the tendency
of the results is robust as shown by the Monte Carlo lower confidence
interval and with respect to changes in individual key parameters.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.esd.2013.06.002.
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