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Abstract 4 

We assess economic costs of heat-induced reductions in worker productivity at global scale 5 
under RCP2.6 and RCP8.5. Losses in worker productivity are calculated by using an 6 
empirically estimated epidemiological exposure-response function, and the associated 7 
economic costs are assessed by using a dynamic multi-region, multi-sector computable general 8 
equilibrium model. Autonomous mechanisation of outdoor work in agriculture and construction 9 
is implemented in the model. We find that under RCP8.5 by 2100, heat-induced reductions in 10 
worker productivity result in an average decline of 1.4% in global gross domestic product 11 
(GDP) relative to the reference scenario with no climate change. This is approximately 0.4 12 
percentage points less than when no autonomous mechanisation is assumed. For comparison, 13 
measuring the economic costs using occupational health and safety recommendations leads to 14 
a 2.4% reduction in global GDP, which is substantially larger than when the epidemiological 15 
exposure-response function is used. Countries of Africa, South-East Asia, and South Asia are 16 
the worst affected by heat stress. However, economic costs could be substantially alleviated if 17 
a 2°C global warming target is achieved. Under RCP2.6, the average reduction in global GDP 18 
is only 0.5%. A large fraction of global mitigation costs of achieving the 2°C global warming 19 
target could be offset by the avoided adverse impacts of heat stress on worker productivity at 20 
higher warming levels.  21 

Keywords: heat stress; worker productivity; cost; CGE model  22 

1. Introduction 23 

It is well established that heat stress (HS) can have adverse impacts on human health; extreme 24 
heat may cause heat stroke, heat exhaustion, and dehydration and worsen cardiovascular and 25 
kidney diseases (Kovats and Hajat, 2008; Blois et al., 2015). Growing scientific evidence 26 
indicates that the frequency, intensity, and duration of heat waves tend to increase with global 27 
warming (Meehl and Tebaldi, 2004; Russo et al., 2017; Dosio et al., 2018). Several empirical 28 
studies explored the relationship between HS and mortality and morbidity and showed that 29 
climate change could significantly increase the risk of heat-induced mortality and morbidity in 30 
the future (Ahmadalipour and Moradkhani, 2018; Basu and Samet, 2002; Gasparrini et al., 31 
2017; Hajat and Kosatsky, 2010; Phung et al., 2016; Turner et al., 2012). 32 

Furthermore, working in a hot environment increases the heat-related risk to human health 33 
because physical activities raise the metabolic heat inside the body (Parsons, 2014). Heat stress 34 
and strain depend on several factors, such as air temperature, radiated heat, humidity, wind 35 
speed (or air movement over skin), clothing, and metabolic heat generated by physical activities 36 
(Kjellstrom et al., 2009, 2016). HS may cause workplace injuries (Tawatsupa et al., 2013; Ma 37 
et al., 2019). To mitigate the heat-related risk to human health, the International Organisation 38 
for Standardisation (ISO) and the U.S. National Institute for Occupational Safety and Health 39 
(NIOSH) developed protective guidelines (standards). In essence, these standards describe the 40 
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required frequency and duration of rest breaks at work during physical activities at certain heat 41 
levels. To assess the impacts of HS on work capacity, the ISO and NIOSH guidelines were used 42 
as a heat assessment metric in several impact studies (Kjellstrom et al., 2009; Dunne et al., 43 
2013; Bröde et al., 2018). Overall, the research on heat-induced impacts on worker productivity 44 
is still at an early stage, and there is little detailed knowledge on how HS could affect the actual 45 
efficiency of work and production. However, the underlying physiological limits are well 46 
understood (Parsons, 2014), and increasing HS in workplaces due to climate change will 47 
increase the risk to human health and worker productivity (Kjellstrom et al., 2009). Several 48 
impact studies showed that economic costs due to HS may be substantial (Kjellstrom et al., 49 
2019; Orlov et al., 2019; Roson and van der Mensbrugghe, 2012; Takakura et al., 2018, 2017). 50 
It has been shown that economic costs arising from decreased worker productivity are larger 51 
than any other climate related impacts (DARA, 2012; Hsiang et al., 2014). However, the 52 
number of economic studies remains limited, and all existing studies reveal large uncertainties 53 
in the estimates. Moreover, most of previous studies use the ISO and NIOSH standards to 54 
calculate the impacts of HS on work capacity, which implies that the estimated economic costs 55 
should be interpreted as the cost, in terms of reduced work hours and thereby production, of 56 
preventing heat-induced diseases. Yet, HS could reduce the efficiency of work (i.e., worker 57 
productivity) and this type of impact differs from the impact calculated by using the ISO and 58 
NIOSH preventative standards (Takakura et al., 2017). 59 

In contrast to previous economic studies that analysed the cost of preventing heat-induced 60 
illness, we use the empirically estimated epidemiological exposure-response function 61 
developed by Kjellstrom et al. (2018) and Bröde et al. (2018) to assess economic costs resulting 62 
from heat-induced reductions in worker productivity at global scale under different mitigation 63 
projections. We also investigate the relevance of socioeconomic and modelling uncertainties. 64 
While previous studies assumed the same and constant level of work intensity among regions, 65 
we differentiate sectoral work intensities by regions and implement autonomous mechanisation 66 
of outdoor work in the economic model. Moreover, this study addresses the challenges of 67 
integrating spatiotemporal physical responses into a macro-economic model. The remainder of 68 
the paper is as follows. Section 2 describes the methodology. Section 3 presents and discusses 69 
the results from an economic impact assessment. The final section concludes the study.    70 

2. Methods 71 

To assess economic implications of heat-related impacts on worker productivity, we use an 72 
interdisciplinary approach that combines climate projections, epidemiological findings, and 73 
economic analyses. The analysis procedure is illustrated in Fig. 1. In short, climate projections 74 
on air temperatures, relative humidity, wind speed, and solar radiation are used to calculate the 75 
wet bulb globe temperature (WBGT), which is then combined with exposure-response 76 
functions to estimate the heat-induced impacts on work capacity loss (i.e., a physiological 77 
variable). Finally, the calculated losses in work capacity, which can also be interpreted as 78 
worker productivity losses or work efficiency losses (i.e., an economic variable), are 79 
implemented in a computable general equilibrium (CGE) model to investigate economy-wide 80 
impacts of HS under RCP2.6 and RCP8.5 and different socio-economic assumptions. 81 
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 82 
Fig. 1: Approaches and analysis procedures. Tas stands for daily mean temperatures, Tasmax is daily maximum 83 
temperatures, rh is relative humidity, sfcWind is wind speed, and rsds is solar radiation. WBGTshade stands for 84 

the WBGT indoors (or outdoor in the shadow) and WBGTsun is the WBGT outdoors.    85 

2.1 Climate projections 86 

To calculate the WBGT, we use historical and projected climate simulations from the Inter-87 
Sectoral Impact Model Intercomparison Project (ISIMIP) (Warszawski et al., 2014), which 88 
provides bias-corrected data on daily near-surface maximum and mean temperatures, relative 89 
humidity, wind speed, solar radiation at a resolution of 0.5°×0.5° geographic grid (Hempel et 90 
al., 2013). The period from 1981 to 2005 is defined as a historical reference period, which aims 91 
to represent the current climatic conditions. For our economic impact assessment, we take 92 
climate projections associated with the representative concentration pathways, RCP2.6 and 93 
RCP8.5, which illustrate an optimistic and pessimistic scenario in terms of global warming, 94 
respectively. To investigate climate uncertainties, we use climate projections from two climate 95 
models (i.e., general circulation models (GCMs)), which are GFDL-ESM2M and HadGEM2-96 
ES. These two models are often quoted, and envelope well the uncertainties of the ensemble-97 
mean of the IPCC projections.  98 

2.2 Calculation of WBGT 99 

While there are many different heat stress indicators, WBGT is mainly used as a HS index in 100 
occupational health to measure the exposure-response relationship between climate variables 101 
and work performance. To calculate the indoor (or outdoor in the shadow) WBGT 102 
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(WBGTshade) without air conditioning, we use the formula from Lemke and Kjellstrom (2012), 103 
which was based on the formulation from Bernard and Pourmoghani (1999). This formula 104 
applies only at a wind speed of 1m/s and no heat radiation. Eq. 2.2.1 shows the core formula 105 
for the calculation of WBGTshade.  106 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 0.67 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏 + 0.33 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇                                (Eq. 2.2.1) 107 

where Tpwb is the psychrometric wet bulb temperature (°C), and Tas is the air temperature 108 
(°C).  109 

Tpwb is calculated by using Tas and dewpoint temperatures by iterations, and the dewpoint 110 
temperature is calculated by using Tas and relative humidity. For more details regarding the 111 
calculation of Tpwb, we refer to Lemke and Kjellstrom (2012) and Bernard and Pourmoghani 112 
(1999). To calculate WBGTshade for each grid cell, we use an R package written by Casanueva 113 
(2019).      114 

An accurate calculation of outdoor WBGT (WBGTsun) is more complicated than WBGTshade 115 
because it also includes the effect of wind and solar radiation. The formulas of Liljegren et al. 116 
(2008) (hereafter: the Liljegren approach) have proved to be the most accurate method to 117 
calculate WBGTsun (Lemke and Kjellstrom, 2012). Eq. 2.2.2 shows the basic formula for 118 
calculation of WBGTsun (Lemke and Kjellstrom, 2012; Liljegren et al., 2008):    119 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 0.7 ∗ 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 + 0.2 ∗ 𝑇𝑇𝑇𝑇 + 0.1 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇                               (Eq. 2.2.2) 120 

where Tnwb stands for the natural wet bulb temperature (°C) and Tg is the globe temperature 121 
(°C). More details on the calculation of Tnwb and Tg can be obtained from Liljegren et al. 122 
(2008).   123 

The Liljegren approach also requires iterative solutions, which are very computationally 124 
intensive, especially for data with a high spatiotemporal resolution. In essence, the calculation 125 
of WBGTshade and WBGTsun is formulated as a non-linear optimisation problem. The 126 
calculation of WBGTsun using the Liljegren approach is much more computationally intensive 127 
than the calculation of WBGTshade because one has to consider latitude, the month, and the 128 
time of day (i.e., azimuth of the sun) to obtain a correct solar radiation. Therefore, we 129 
approximate the Liljegren approach as follows. First, using the ISIMIP daily data on 130 
temperatures, solar radiation, and wind speed over the period of 2011-2020, we calculated the 131 
WBGTsun using the Liljegren approach. Then, we conduct a regression analysis, where the 132 
response variable is the calculated WBGTsun and the explanatory variables are air 133 
temperatures, dewpoint temperatures, solar radiation, wind speed, month, and latitude. Finally, 134 
we perform an out-of-sample validation. We find that a 2nd order polynomial provides a very 135 
good approximation with a high accuracy. We use the estimated polynomial to calculate the 136 
WBGTsun for the entire datasets. For more details, see the supplementary material, SM1.      137 

In our analysis, both WBGTshade and WBGTsun are calculated on a daily basis and for each 138 
grid cell for the historical reference period in both RCP2.6 and RCP8.5. Working hours differ 139 
by economic sector, but core hours typically vary from 6am to 6pm. Temperatures vary within 140 
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a day, and so do the heat-induced impacts on worker productivity. Future projections of climate 141 
variables are not available on an hourly basis in ISIMIP. To calculate average daily impacts, 142 
we use an approximation for hourly data based on the 4+4+4 method implemented by 143 
Kjellstrom et al. (2018). According to the 4+4+4 method, it is assumed that 4 hours of a 12-144 
hours daylight day are close to WBGTmax, other 4 hours (early morning and early evening) 145 
are close to WBGTmean, and the remaining 4 hours are an average value of WBGTmean and 146 
WBGTmax. In our analysis, we calculate the average daily impacts on worker productivity 147 
under WBGTmax, WBGTmean, and an average value of WBGTmean and WBGTmax. 148 

2.3 Exposure-response functions 149 

To calculate the productivity losses due to HS, we use the exposure-response function derived 150 
by Kjellstrom et al. (2018) and further used by Bröde et al. (2018) for the “high occupational 151 
temperature health and productivity suppression” programme (Hothaps) (hereafter: the Hothaps 152 
function). The calibration of the Hothaps function is based on empirical epidemiological studies 153 
conducted by Wyndham (1969) and Sahu et al. (2013). The Hothaps function is a two-parameter 154 
logistic function, which describes the relationship between worker productivity and WBGT for 155 
different levels of work intensity:  156 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 0.1 + 0.9

�1+�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝛼𝛼1

�
𝛼𝛼2
�
                                                                   (Eq. 2.3.1) 157 

where 𝛼𝛼1 and  𝛼𝛼2 are the estimated parameters for low-intensity work (34.64 and 22.72), for 158 
moderate-intensity work (32.93 and 17.81), and for high-intensity work (30.94 and 16.64). Fig. 159 
2 illustrate the relationship between worker productivity loss due to HS and WBGT, derived 160 
from the Hothaps function.  161 

 162 
Fig. 2: Exposure-response functions based on the Hothaps metric. The impacts on productivity were measured at 163 
an hourly basis in the field studies on which the exposure-response function was calibrated. Bröde et al. (2018) 164 
assume that “working is possible for 6 min within each hour even under extreme heat”. Therefore, productivity 165 

loss does not reach 100% even under high heat stress levels.  166 
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Work intensity is described by metabolic rates measured in Watts (W). According to Kjellstrom 167 
et al. (2009), an average metabolic rate for low-intensity work accounts for 200 W, for 168 
moderate-intensity work, it is 300 W, and for high-intensity work, it is 400 W. The service and 169 
manufacturing sectors require mainly indoor work, while agriculture and construction typically 170 
involve outdoor labour. Therefore, to calculate heat-induced impacts on worker productivity in 171 
agriculture and construction, we use the WBGTsun, whereas for services and manufacturing, 172 
the WBGTshade is implemented. As mentioned above, the value of WBGTsun is higher than 173 
that of WBGTshade since people working outdoors are exposed to an additional HS due to solar 174 
radiation. On the other hand, wind could alleviate the HS through a cooling effect. Following 175 
previous studies (Kjellstrom et al., 2018), agriculture and construction are assumed to be high-176 
intensity jobs (400 W), while manufacturing and services require moderate-intensity (300 W) 177 
and low-intensity work (200 W), respectively.      178 

Physical responses (i.e., relative worker productivity losses) are also calculated on a daily basis 179 
for each grid cell and for each level of work intensity. Then, the spatiotemporal data on heat-180 
induced reductions in worker productivity is matched with the gridded data on the population 181 
count to obtain population-weighted impacts on worker productivity at a regional level. To 182 
weight the impacts for the historical reference period, we use the gridded UN WPP-adjusted 183 
population count data provided by CIESIN (2017), while the impacts under RCP2.6 and 184 
RCP8.5 are weighted by the spatial population projections associated with the shared 185 
socioeconomic pathways (SSPs) developed by Jones and O’Neill (2016) and further described 186 
in section 2.4. Finally, we calculate the deviations between the heat-induced reductions in 187 
worker productivity in the historical reference period and each RCP, respectively, so that we 188 
obtain the future impacts of HS on worker productivity resulting from global warming. These 189 
calculated physical impacts (i.e., relative reductions in work efficiency) are then implemented 190 
in the economic model described below.  191 

2.4 Economic model 192 

There are different approaches to assess economic costs arising from heat-induced reductions 193 
in worker productivity. For example, direct economic costs could be valuated using wage rates 194 
or value added. To assess aggregated impacts on GDP, one could use the so-called “first-order 195 
effects” approach; the sum of changes in worker productivity in production sectors, which are 196 
weighted by labour income shares in total GDP (Roson and Sartori, 2016). However, indirect 197 
effects related to the interdependencies between economic sectors are thereby ignored.  In our 198 
analysis, we employ a recursive-dynamic multi-region, multi-sector computable general 199 
equilibrium (CGE) model, GRACE (Aaheim et al., 2018). CGE models are widely used for 200 
impact assessments and policy evaluations (Château et al., 2014; Corong et al., 2017). The 201 
framework of a CGE model enables to consistently depict sectoral and regional 202 
interdependencies, thereby providing a comprehensive valuation of socio-economic costs. The 203 
static version of GRACE is calibrated around Version 9 of the GTAP database (Angel et al., 204 
2016), which depicts global economic transactions in 2011 for 140 regions and 57 sectors. All 205 
values in Version 9 of the GTAP database are expressed in US$2011. We aggregate all regions 206 
into 10 regions, which are Africa, East Asia, South Asia, South-East Asia, West Asia, Europe, 207 
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North America, South America, Oceania, and Former Soviet Union (FSU) (see Fig. 3 and 208 
supplementary material, SM2). Note that several countries, in particular African countries, are 209 
missing in the used version of the GTAP database. Hence, aggregated impacts for the regions 210 
of Africa could be biased. All production sectors are aggregated into 12 sectors, which are 211 
crops, livestock, food, services, manufacturing, transport, construction, crude oil, oil refinery, 212 
coal, electricity, and gas (see supplementary material, SM2). To calibrate the dynamic version 213 
of GRACE from 2011 to 2100, we use the projections of gross domestic product (GDP) and 214 
population growth rates associated with SSPs (see supplementary material, SM3). SSPs 215 
describe different possible socio-economic pathways (i.e., economic development, population 216 
growth, land use, and energy consumption), which help to understand long-term consequences 217 
of near-term decisions (Riahi et al., 2017). The model was run under the pathways SSP1, SSP4 218 
and SSP5. SSP5 (“Fossil-fueled Development”) describes a world with high economic growth 219 
relying on fossil fuel consumption, high challenges to mitigation but low challenges to 220 
adaptation; SSP4 (“Inequality”) implies high inequality among regions with low challenges to 221 
mitigation but high challenges to adaptation; and SSP1 (“Sustainability”) is a world on a 222 
sustainable development pathway with low challenges to mitigation and adaptation (Riahi et 223 
al., 2017). While SSP5 is characterised by relatively high growth rates of GDP per capita, SSP1 224 
and SSP4 are associated with a lower economic growth among regions. The growth rates of 225 
SSP1 and SSP4 are very similar for Oceania, North America, and Europe, whereas these 226 
significantly differ by developing countries with the economic growth being less pronounced 227 
under SSP4. This is because SSP4 is designed to depict a world with growing income inequality 228 
both across and within regions (Calvin et al., 2017). For more details on key differences among 229 
SSPs, we refer to Riahi et al. (2017).  230 

 231 
Fig. 3: Regional mapping. 232 

The reference scenario in the GRACE model is calibrated given the assumption of a balance 233 
growth path, i.e., the ratio of capital and labour is held constant. A structural change is depicted 234 
by using a Stone-Geary utility function, which implies different income elasticities of demand 235 
for commodities and services. Income elasticities of demand for food products are empirically 236 
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estimated using the FAO and World Bank databases (see supplementary material, SM4). 237 
Income elasticities of demand for other goods and services are derived from Chapter 14 of the 238 
GTAP database (Hertel and Mensbrugghe, 2016). Levels of subsistence consumption for each 239 
demand category are re-calibrated by population growth. Furthermore, following Britz and 240 
Roson (2019), we implement differentiated productivity growth for agriculture, manufacturing, 241 
and services (see supplementary material, SM5). Both differentiated income elasticities and 242 
sectoral productivity drive structural changes. We assume no labour mobility across borders 243 
(i.e., no migration), while labour and capital are mobile among sectors within a region. 244 
Moreover, capital is assumed to be mobile across regions. Trade elasticities are adopted from 245 
the GTAP model. Sectoral production is described by nested constant elasticity of substitution 246 
(CES) functions over intermediates, labour, capital, and natural resources. So, labour enters the 247 
production function as an input (i.e., primary production factor). In the model, heat-induced 248 
reductions in worker productivity are implemented through reductions in the parameters 249 
depicting labour efficiency in the CES aggregate. Consequently, changes in labour efficiency 250 
affect the sectorial output. For more details on the model structure and underlying assumptions, 251 
we refer to Aaheim et al. (2018).  252 

2.5 Air conditioning 253 

Air conditioning devices are an effective adaptation strategy to avoid or at least substantially 254 
reduce HS in the indoor environment. Using the logistic function estimated by Isaac and van 255 
Vuuren (2009) based on the data on the penetration of air conditioners (AC) in the residential 256 
sector in various countries collected by McNeil and Letschert (2008), we calibrate the 257 
penetration rates of AC for the aggregated regions of interest. Eq. 2.5.1 shows the relationship 258 
between the availability (or affordability) of AC and income measured as GDP per capita 259 
measured in U.S. dollars (2011).  260 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1

�1+𝑒𝑒�4.152−0.237∗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
1000 ��

                                                               (Eq. 2.5.1) 261 

The calculated penetration rates of AC by region and SSP are illustrated in Fig. 4. A higher 262 
penetration rate of AC implies a lower exposure to HS in the indoor environment. We assume 263 
that when the penetration rate of AC reaches its maximum value (i.e., equal unity), the 264 
productivity of indoor work is not any longer affected by HS. By the middle of the century, the 265 
diffusion of AC in developed countries reaches its saturation. For developing countries, the 266 
installation of AC occurs rapidly under SSP5, followed by SSP1, while under SSP4, it proceeds 267 
very slow; for example, in many developing countries, the penetration rate is less than 50% 268 
even by 2100.     269 
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 270 
Fig. 4: Penetration rates of air conditioners by region and SSP.  271 

Note that the calibrated logistic function developed by Isaac and van Vuuren (2009) describes 272 
the availability of AC in the residential sector only, but the penetration of AC in industries at 273 
workplace could differ. Due to a lack of data, we assume that the penetration of AC in the 274 
manufacturing and services sector follows the same trajectory.   275 

2.6 Work intensity and economic growth  276 

While installation of AC could effectively alleviate heat-induced reductions in worker 277 
productivity of indoor jobs, automation and mechanisation is likely to be one of most effective 278 
adaptation strategies for outdoor work, in particular if shifting working hours is problematic. In 279 
previous studies, it was assumed that agriculture and construction require high-intensity jobs 280 
with a metabolic rate of 400 W for all regions. However, work intensity of outdoor jobs likely 281 
differs by country due to differences in economic development. A plausible assumption is that, 282 
due to a higher level of mechanisation, agricultural and construction sectors in developed 283 
countries are less work intensive (or more capital-intensive) compared to those in developing 284 
countries. Moreover, economic development will lead to a further increase in mechanisation of 285 
work in both developed and developing countries, which in turn will alleviate adverse heat-286 
induced impacts on worker productivity. Thus, assuming the same constant work intensity for 287 
all countries could lead to biased results. 288 

In the Hothaps function, the vulnerability to HS is captured by two parameters (i.e., 𝛼𝛼1 and 𝛼𝛼2), 289 
which are calibrated for only three types of work intensity (see Eq. 3.3.1). We use a linear 290 
interpolation to synthesise those parameters for different levels of work intensity, so the 291 
parameters 𝛼𝛼1 and 𝛼𝛼2 become a function of work intensity. The number of tractors per 100 km2 292 
of arable land, which is available at the World Bank database (World Bank, 2019), serves as an 293 
indicator of mechanisation and work intensity in agriculture. We empirically estimate the 294 
relationship between economic growth and the availability of tractors among countries (see 295 
supplementary material, SM6). These estimates are then used to map different levels of work 296 
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intensity with the economic growth. Based on existing studies assessing energy costs for 297 
different types of jobs (Poulianiti et al., 2019), we find that the metabolic energy use associated 298 
with manual work in agriculture is 1.5 times as high as in mechanised work. So, we assumed 299 
that agriculture in countries with the lowest number of tractors has work intensity of 400 W, 300 
whereas in countries with the highest mechanisation, it equals 267 W (see supplementary 301 
material, SM6). Because data on machinery and equipment used in construction are not 302 
available, we assume that the relationship between economic growth and work intensity in 303 
construction is the same as in agriculture. Finally, we obtain new exposure-response functions, 304 
whose parametrisation depends on the economic growth (see Fig. 4). For example, the 305 
calibrated work intensity of agriculture and construction in developed countries in 2011 is 306 
around 370 W, while in developing countries, it is close to 400 W. Economic growth, which is 307 
depicted by SSPs, leads to a lower work intensity due to mechanisation. Under SSP5, reductions 308 
in work intensity are substantial in all regions, whereas under SSP1 and SSP4, these are less 309 
pronounced. In particular for developing countries, reductions in work intensity are moderate 310 
under SSP4, as illustrated by relatively flat curves in Fig. 5 (i.e., SSP4 implies the lowest 311 
adaptation capacity). Mechanisation of outdoor work is autonomously implemented in the 312 
model for each scenario, and it depends solely on the assumed economic growth. In other words, 313 
mechanisation is exogenously determined, and it does not change in response to increased heat 314 
levels. 315 

 316 
Fig. 5: Calibrated relationship between economic growth and work intensity in agriculture and construction. 317 

2.7 Scenarios and uncertainties  318 

Here we summarise our scenario setting. We consider three main scenarios, RCP8.5-SSP5, 319 
RCP2.6-SSP1, and RCP2.6-SSP4, which are conducted under different modelling assumptions 320 
and parameterisation. Model results are presented in relative terms and should be interpreted as 321 
changes relative to the reference scenario with no climate change (NoCC). In our analysis, we 322 
address several types of uncertainties:  323 
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• Climate models. This analysis is based on climate data from two climate models, 324 
GFDL-ESM2M and HadGEM2-ES, which allows us to capture uncertainties related to 325 
the choice of underlying GCMs.   326 

• Socio-economic pathways. SSPs provide projections of economic and population 327 
growth. RCP8.5 is combined with SSP5 only, whereas several SSPs are plausible in 328 
combination with RCP2.6. To tackle socio-economic uncertainties, we map RCP2.6 329 
with SSP1 and SSP4, where the former aims to depict a sustainable pathway with low 330 
challenges to mitigation and adaption, and the latter describes a world with increasing 331 
income inequality within and across countries and low challenges to mitigation but high 332 
challenges to adaptation. Note that SSPs were constructed by different institutes such as 333 
IIASA, OECD, and PIK, which made different assumptions about future economic and 334 
population growth. We take mean values of those projections (i.e., GDP and population 335 
growth) to represent the individual SSPs.    336 

• Sectoral labour mobility. In the core version of the GRACE model, labour is assumed 337 
to be perfectly mobile across sectors. To investigate the sensitivity of model results with 338 
respect to the assumption of sectoral labour mobility, following Dixon and Rimmer 339 
(2006), we implement inertia in the labour market by using a constant elasticity of 340 
transformation (CET) function with a transformation elasticity of 2.    341 

• Capital-labour substitution. To test the robustness of model results with respect to the 342 
value of substitution elasticities between capital and labour, we conduct a sensitivity 343 
analysis using a plausible range of substitution elasticities of 0.3–0.7. The core value of 344 
the substitution elasticity within the value-added aggregate equals 0.5. 345 

Results from a CGE model are typically sensitive to the parameterisation of the model where a 346 
shock is implemented. Regarding this case study, a shock is implemented on labour 347 
productivity, so the parametrisation of the labour market could be important (e.g., substitution 348 
elasticities within the value added and labour mobility). Other factors such as trade elasticities 349 
might also be relevant. Yet, we tested the robustness of model results with respect to different 350 
values of trade elasticities among regions; the sensitivity analysis showed that results remain 351 
robust.   352 

3. Results and discussion  353 

3.1 Macroeconomic impacts 354 

The model results show that HS leads to substantial reductions in worker productivity, 355 
especially the productivity of high intensity work in low-latitude countries of Africa, South 356 
America, and Asia. Given the assumption of absence of AC and constant work intensity, 357 
reductions in worker productivity in some regions under RCP8.5 could even exceed 40% by 358 
2100 compared to NoCC (see Fig. 6a, b).   359 
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360 
Fig. 6a: Average changes in worker productivity for levels of different work intensity and RCP scenarios by 361 

2100 relative to the reference scenario with no climate change. The Hothaps function is used to estimate the heat 362 
impacts on worker productivity. Adaptation measures, such as air conditioners and mechanisation of work, are 363 
not implemented at grid cell levels. Low and moderate work intensity implies work indoors (i.e., services and 364 

manufacturing), while a high work intensity implies work outdoors (i.e., agriculture and construction).    365 

 366 
Fig. 6b: Same as Fig. 6a but showing the regional aggregated population-weighted average changes in worker 367 

productivity.  368 

3.1.1 Global economic impacts 369 

Hothaps vs. ISO 370 

In contrast to previous economic studies, which used occupational health and safety 371 
recommendations (e.g., ISO 7243:1989) (ISO, 1989) as a heat stress assessment metric, we use 372 
the epidemiological exposure-response (Hothaps) function calibrated based on field studies. 373 
We find that when using the Hothaps function, reductions in global GDP are considerably less 374 
pronounced than under the ISO 7243:1989 standards. For example, under RCP2.6 by 2050 and 375 
2100, the average reduction in global GDP is around 0.5% relative to NoCC, which is 376 
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approximately 0.4 percentage points lower than when the ISO 7243:1989 standards are used. 377 
For RCP8.5, using the Hothaps function with constant work intensity results in an average 378 
reduction of 0.7% (1.8%) in global GDP by 2050 (2100) relative to NoCC, which is 0.6 379 
percentage points lower than when the ISO 7243:1989 standards are used. Comparing to 380 
previous studies, Takakura et al. (2017) find that under the highest emission scenario, the 381 
average cost of preventing heat-related illness accounts for 3.3% relative to NoCC. The ISO 382 
metric is more restrictive regarding work capacity during hot temperatures because it provides 383 
recommendations to avoid any heat related illness. Yet, not following the ISO standards at 384 
workplaces can increase the risk of heat related illness, which could imply additional economic 385 
costs of human health care and treatment. However, this type of costs is not accounted for in 386 
our analysis. The usage of the ISO metric for impact assessments maybe more relevant for well-387 
regulated settings (i.e., developed countries), while the exposure-response function maybe more 388 
suitable for informal, unregulated settings (i.e., developing or least developed countries).  389 

Mechanisation  390 

Furthermore, assuming mechanisation of outdoor work, which implies decreasing work 391 
intensity, diminishes economic costs resulting from HS. Under RCP2.6, decreasing work 392 
intensity due to mechanisation does not have a strong impact on the results compared to the 393 
case when a constant work intensity is assumed. However, under RCP8.5 by 2100, reductions 394 
in global GDP are significantly lower when mechanisation is assumed (see the solid and dashed 395 
lines in Fig. 7). According to the model results, mechanisation in agriculture and construction 396 
diminishes the reduction in global GDP by approximately 0.4 percentage points. Note that the 397 
projected mechanisation of outdoor jobs is uncertain as it is based on a simple linear 398 
interpolation. On the one hand, a rapid technological change (i.e., robotisation) could lead to 399 
larger reductions in work intensity. However, a rapid diffusion of less labour-intensive 400 
technologies in poor countries could be seriously hindered by low income (i.e., a low 401 
affordability of new technologies). Therefore, we consider our estimates to be rather 402 
conservative.      403 

Private consumption and mitigation costs  404 

The estimated high economic costs induced by HS imply that large cost-savings could be 405 
achieved if the transition to a low-emission pathway of 2°C global warming target succeeds. 406 
According to the IPCC’s Fifth Assessment Report (AR5), by 2100, the mean value of global 407 
mitigation costs of achieving a 2°C global warming target accounts for 4.8% of a reduction in 408 
global consumption relative to the baseline that implies no mitigation policies (i.e., RCP8.5) 409 
(IPCC, 2014). The results from our model simulations reveal that when using the Hothaps 410 
function and assuming autonomous mechanisation, global private consumption falls by 2% 411 
under RCP8.5 by 2100 (see supplementary material, SM7). This implies that approximately 412 
42% of the global mitigation cost could be offset by avoiding the adverse impacts of HS on 413 
worker productivity. However, not all regions would benefit equally from that; in some high-414 
latitude countries, which are less exposed and vulnerable to heat stress, mitigation costs could 415 
exceed the benefit of avoiding climate-induced warming.  416 
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 417 
Fig. 7: Changes in global GDP under RCP2.6 and RCP8.5 compared to the reference scenario with no climate 418 

change. The solid and dashed lines show the mean values and the shaded areas indicate uncertainties in the 419 
estimated impacts. In the plot legend, “mechanisation” (solid lines) stands for decreasing work intensity due to 420 
mechanisation driven by an economic growth, while “no mechanisation” (dashed lines) implies a constant work 421 
intensity. “Hothaps” stands for the epidemiological exposure-response function, while “ISO” implies that ISO: 422 

7243:1989 standards are used to assess heat stress impacts on worker productivity.      423 

3.1.2 Uncertainties 424 

As illustrated by shaded areas in Figure 7, economic costs of HS are very uncertain; for 425 
example, when using the Hothaps function, the reduction in global GDP could reach 2.4% under 426 
RCP8.5 by 2100. The results from an ANOVA analysis reveal that until the middle of the 427 
century, the largest fraction of the variance (62%) in the results is explained by uncertainties 428 
around GCMs, followed by the uncertainty of mitigation scenarios (i.e., RCP2.6 vs. RCP8.5), 429 
which explains around 33% of the variance (see Fig. SM7.2 in supplementary material). In the 430 
second half of the century, the uncertainty of mitigation scenarios becomes more relevant; for 431 
example, by 2100, approximately 73% of the variance in the results is explained by differences 432 
between RCP2.6 and RCP8.5, whereas using different climate models explains 22% of the 433 
variance. Using the output from the GFDL-EMSM2M model leads to much less pronounced 434 
reductions in global GDP compared to HadGEM2-ES (see Fig. SM7.3 in supplementary 435 
material). This could be explained by different assumptions about climate sensitivity between 436 
these two GCMs. Interestingly, the results are less sensitive to the socio-economic uncertainties, 437 
such as sectoral labour mobility, economic and population growth (i.e., SSPs), and substitution 438 
elasticities in production. Although overall socio-economic conditions are certainly important, 439 
the uncertainty of climate modelling and mitigation scenarios drive a larger variance in the 440 
results. In our analysis, we consider a combination of RCP2.6 with SSP1 and SSP4, whereas 441 
RCP8.5 is combined only with SSP5. The differences in the estimated economic costs under 442 
RCP2.6-SSP1 and RCP2.6-SSP4 are moderate because the impacts of HS under RCP2.6 are 443 
relatively small. 444 
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3.1.3 Regional economic impacts 445 

Economic costs resulting from heat-induced reductions in worker productivity vary 446 
substantially across geographical regions. Under RCP2.6 by 2050, changes in real GDP in rich 447 
regions, such as Europe, North America, and Oceania, are negligible, whereas Africa, South-448 
East Asia (e.g., Indonesia, Thailand, and Vietnam) and South Asia (e.g., India, Pakistan, and 449 
Bangladesh) experience considerable economic losses, i.e., reductions in real GDP are larger 450 
than 1% (see Fig. 8). Overall, under RCP2.6 by 2100, the impacts on regional GDPs are of the 451 
same order of magnitude as compared to 2050 since radiative forcing stabilises by the middle 452 
of the century under this scenario. High economic costs in African and Asian countries are 453 
explained by i) a strong increase in temperatures, ii) a low capacity to adapt, and iii) the 454 
composition of employment. In developing countries, the share of agriculture in GDP and the 455 
share of workers employed in agriculture, which are at a high risk of suffering HS impacts, is 456 
considerably larger than in developed countries. Furthermore, many countries that are the most 457 
affected by HS have high working poverty rates, informal employment, subsistence agriculture, 458 
and a lower social security coverage (Kjellstrom et al., 2019).      459 

Under RCP8.5, the pattern of reductions in regional GDPs is very similar to that of RCP2.6, but 460 
the quantitative impacts are of larger magnitude compared to RCP2.6 due to higher 461 
temperatures and non-linearities in the exposure-response relationship. For example, under 462 
RCP8.5 by 2050 (2100), an average reduction in real GDP of Africa accounts for 2.7% (3.6%), 463 
for South-East Asia, it is 3.5% (2.4%), and for South Asia, it is 4.2% (6%). There are 464 
uncertainties in the estimated impacts; for example, the reduction in GDP of South Asia could 465 
reach 8%. Overall, an average reduction in real GDP across regions under RCP8.5 by 2050 466 
(2100) is 1.9 (2.6) times as large as under RCP2.6. The combination of RCP8.5-SSP5 implies 467 
a higher economic growth and therefore, a higher adaptative capacity compared to RCP2.6-468 
SSP1/SSP4. Nevertheless, adverse heat-induced impacts on worker productivity under RCP8.5 469 
are substantially greater than under a 2°C pathway, so the adverse impacts of HS outweigh the 470 
effect of having a higher adaptative capacity. Note that the reported relative changes in regional 471 
GDPs could substantially differ within a region as well as among different household groups. 472 
The impacts on total private consumption by region, which are often considered as an 473 
alternative measure of welfare to GDP, can be found in supplementary material (see Figure 474 
SM7.4). Reductions in total private consumption have a similar pattern but more pronounced 475 
compared to the impacts on GDP. The results from model simulations also show that changes 476 
in private consumption are very similar to changes in real disposable income. While private 477 
consumption implies expenditures on consumption of goods and services, disposable income 478 
also include savings. 479 
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 480 
Fig. 8: Changes in regional GDP under RCP2.6 and RCP8.5 by 2050 and 2100 compared to the reference 481 

scenario with no climate change. The Hothaps function is used to estimate the heat impacts on worker 482 
productivity. Dashed read line shows the mean values across regions, and the error bars indicate the uncertainties 483 

in the estimates. 484 

3.2 Sectoral impacts  485 

3.2.1 Agriculture and construction  486 

Agriculture (i.e., crops and livestock) and construction are the most adversely affected by HS 487 
because these sectors require many work-intensive activities in the outdoor environment. Even 488 
under RCP2.6 some regions, such as Africa and Asia, experience substantial reductions in 489 
worker productivity in these sectors, while under RCP8.5, the reductions are significantly larger 490 
(Fig. 9). For example, under RCP8.5 by 2050, an average reduction in worker productivity in 491 
agriculture and construction across regions accounts for almost 4.2% relative to NoCC, whereas 492 
for South-East Asia, it is approximately 11%. Decreasing worker productivity due to HS affects 493 
the production output, but this relationship is not one-to-one because of demand responses. So, 494 
relative reductions of production in agriculture and construction are lower than the impacts on 495 
worker productivity; an average reduction in production of crops across regions under RCP8.5 496 
by 2050 amounts to 0.8% relative to NoCC, for livestock, it is 1.3%, and for construction, it is 497 
2.1%. Furthermore, there are even slight increases in production of agricultural goods in 498 
Oceania, North America, FSU, and Europe. Intuitively, demand for agricultural goods tends to 499 
be inelastic, i.e., a reduction in supplies is associated with a relatively larger increase in prices. 500 
According to the model results, a decreased worker productivity in agriculture leads to a lower 501 
production, thereby resulting in higher prices. Therefore, for producers, economic costs from 502 
heat-induced reductions in worker productivity are in part compensated by increased food 503 
prices. In the applied economic model, GRACE, there are also cross-regional interactions 504 
occurring through trade. While many low-latitude regions experience considerable reductions 505 
in worker productivity, less vulnerable regions to HS, such as Oceania, North America, FSU, 506 
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and Europe, receive a comparative advantage in production of agricultural goods, which 507 
explains those moderate increases in their production. As a result, exports of crops from those 508 
regions increase (Fig. 10). It is worth noting that the developed countries have relatively lower 509 
employment rates in agriculture compared to developing countries, and therefore, developed 510 
economies are less vulnerable to HS impacts in agriculture. 511 

 512 
Fig. 9: Average heat-induced changes in worker productivity and production by 2050 under RCP2.6 and RCP8.5 513 

relative to the reference scenario with no climate change. The Hothaps function is used to estimate the heat 514 
impacts on worker productivity. The dashed lines show the mean values across regions. 515 
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 516 
Fig. 10: Average heat-induced changes in private consumption, exports, and imports by 2050 under RCP2.6 and 517 
RCP8.5 relative to the reference scenario with no climate change. The Hothaps function is used to estimate the 518 

heat impacts on worker productivity. The impacts on construction and livestock are not shown here because 519 
these are non-tradable goods and services.  520 

Given the assumption that a large share of low-income population is employed in agriculture 521 
and construction as low-skilled workers, HS could also, to some extent, exacerbate income 522 
inequality in those regions. Note that our analysis focuses entirely on heat impacts on worker 523 
productivity, but droughts (often co-occurring with heatwaves) could also reduce crop yields, 524 
thereby decreasing economic output of farmers in heat-exposed regions.     525 

3.2.2 Manufacturing  526 

Due to the penetration of AC and a lower work intensity, manufacturing is less adversely 527 
affected by HS compared to agriculture and construction. Because of solar radiation, heat-528 
induced impacts on worker productivity in agriculture and construction are stronger than in 529 
manufacturing and services, where work is mainly undertaken indoors. This also explains why 530 
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the production of manufactured goods including food is less exposed to HS compared to 531 
agriculture and construction (Fig. 9). Under RCP8.5 by 2050, the worker productivity and 532 
production of manufactured goods across regions decline by an average of 2.1% and 1.6% 533 
relative to NoCC, respectively. For RCP2.6, an average reduction in both worker productivity 534 
and production across regions accounts for approximately 1%. Differences between relative 535 
reductions in worker productivity and production of manufactured goods are less pronounced 536 
compared to those in agriculture and construction. This is mainly because the demand for many 537 
types of manufactured goods is more elastic than for agricultural goods, so the price effect tends 538 
to be smaller. While developed regions (i.e., Europe, North America and Oceania) experience 539 
slight increases in the production of manufactured goods, many African, South-East Asian, and 540 
South Asian countries have considerable reductions in the production. For example, under 541 
RCP8.5 by 2050, production of manufactured goods in South Asia falls by an average of 6.1%. 542 
In contrast, production and export supplies of manufactured goods from North America, 543 
Europe, and FSU increase (Fig. 9 and 10). Also, there are increases in the exports of food 544 
products from those regions. Private consumption and imports of manufactured goods fall 545 
across regions, especially those most adversely affected by HS.  546 

3.2.3 Services  547 

The service sector exhibits a low risk of exposure to HS, because of penetration of AC and the 548 
lowest work intensity among production sectors. Moreover, like the production of 549 
manufactured goods, the service sector requires mainly indoor jobs. However, relative 550 
reductions in production of services are larger than actual impacts of HS on worker productivity 551 
because of decreased income. Under RCP2.6 (RCP8.5) by 2050, an average reduction in the 552 
production of services across regions is 0.7% (1.4%) relative to NoCC, whereas for South Asia, 553 
it is 2% (4.3%). Like manufacturing, private consumption and imports of services decline across 554 
regions, especially in Africa and Asia. Nowadays, the penetration rate of AC is relatively high 555 
in developed countries, and it is expected to further increase because of economic growth, 556 
thereby completely offsetting moderate impacts of increased temperatures in those countries. 557 
For developing countries, where AC are not yet widely installed in the commercial and 558 
residential sectors, air conditioning also implies an effective adaptation measure to alleviate 559 
heat-related human health risks and to avoid reductions in worker productivity. Yet, this type 560 
of adaptive capacity is virtually limited by affordability of AC (i.e., households’ income); a low 561 
income could prevent a rapid installation of AC.     562 

Due to large uncertainties of future mitigation pathways, sectoral impacts by 2100 are of less 563 
interest. Nevertheless, we briefly highlight some main findings. Under RCP2.6, the heat-564 
induced impacts on the production of goods and services by 2100 do not differ much from those 565 
by 2050 because according to a 2°C pathway, radiative forcing should stabilise after the middle 566 
of the century. In contrast, under RCP8.5, adverse sectoral impacts, especially in developing 567 
regions, become more pronounced by 2100 compared to 2050 (see Figure SM7.5 in 568 
supplementary material). Note that this analysis was conducted at a very aggregated sectoral 569 
level; the impacts of HS could significantly differ within a sector because of differences in work 570 
intensity and heat exposure. 571 
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3.3 Limitations  572 

Several limitations to our analysis should be noted. First, our study does not provide a 573 
comprehensive assessment of heat impacts because extreme heat could induce several other 574 
impacts on economies and society (e.g., impacts on mortality, morbidity, crop yields, and 575 
demand and supply of energy), which could also lead to substantial socio-economic losses. Our 576 
analysis is based on a CGE model, which is widely used for economic impact assessments; 577 
however, CGE models are typically not empirically validated. There are big uncertainties on 578 
how to properly depict demand and supply responses as well as trade in large-scale CGE 579 
models. Furthermore, the epidemiological exposure-response function applied in this study is 580 
calibrated based on a limited number of field studies only. The estimated relationship between 581 
heat levels and worker productivity could differ among regions. More empirical research on 582 
exposure-response relationship is strongly needed. We implement an autonomous penetration 583 
of AC and mechanisation of outdoor work. While the role of mitigation policies is crucial for 584 
reducing HS impacts, a proactive promotion of those adaptation measures could diminish 585 
economic costs from HS. Nevertheless, it requires additional investments for purchasing new 586 
technologies and increases expenditures on electricity (i.e., air conditioning). It is worth 587 
mentioning that increased usage of air conditioners could potentially lead to higher CO2 588 
emissions, depending on the share of fossil fuel based power generation (Akpinar-Ferrand and 589 
Singh, 2010). Modelling an endogenous diffusion of labour-saving technologies and 590 
penetration of AC is a potential subject for future research. Some other adaptation measures to 591 
rising temperatures, such as shifting working hours and wearing cooling vests, are not 592 
implemented in this analysis. The urban heat island effect was also not considered. WBGT was 593 
calculated using daily levels of climate variables, while more accurate estimates of heat 594 
exposure require hourly data, though it is not obvious whether a finer temporal resolution would 595 
significantly change the macro-economic results. Heat acclimatisation, which could also reduce 596 
vulnerability to heat, was not considered in this study.    597 

4. Conclusions 598 

Using an interdisciplinary approach, which combines climate projections, epidemiological and 599 
economic analyses, we assessed the economic cost of heat-induced reductions in worker 600 
productivity under RCP2.6 and RCP8.5 and different socio-economic assumptions. We use 601 
historical and future climate projections from the ISIMIP. For our economic impact assessment, 602 
we use an empirically estimated epidemiological exposure-response (Hothaps) function and a 603 
dynamic multi-region, multi-sector CGE model. We find that when using the Hothaps function 604 
as a heat assessment metric and assuming autonomous mechanisation for outdoor work in 605 
agriculture and construction, average economic costs due to heat stress under RCP8.5 by 2100 606 
account for a 1.4% reduction in global GDP relative to the reference scenario with no climate 607 
change. Autonomous mechanisation diminishes the reduction in global GDP by approximately 608 
0.4 percentage points. For comparison, when occupational health and safety recommendations, 609 
such as the ISO 7243:1989 standards, are used for the economic impact assessment, global GDP 610 
falls by an average of 2.4%. Low-latitude countries of Africa, South-East Asia and South Asia 611 
are at a high risk of exposure to heat stress. Yet, strict mitigation policies aiming to achieve a 612 
2°C global warming target substantially alleviate global economic costs from heat-induced 613 
reductions in worker productivity. For example, under RCP2.6, heat stress leads to an average 614 
decline of only 0.5% in global GDP by 2100. This implies that a large portion of mitigation 615 
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costs could be offset by the benefit of reducing adverse heat-induced impacts on worker 616 
productivity.  For example, according to the IPCC’s Fifth Assessment Report (AR5), the mean 617 
value of global mitigation costs to reach a 2°C target is a 4.8% reduction in global private 618 
consumption relative to the reference scenario with no mitigation policy and no climate impacts. 619 
Our results show that, when economic costs are measured using the Hothaps function, global 620 
warming leads to an average reduction of 2% in global private consumption. This means that 621 
approximately 42% of the mitigation cost could be offset by avoiding the heat-induced 622 
reductions in worker productivity.      623 
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Supplementary material  637 

SM1: Calculation of WBGTsun 638 

To approximate the Liljegren formula, we conduct a regression analysis on a chunk of climate 639 
data. Specifically, we calculated the WBGTsun using the Liljegren formula using daily data on 640 
air temperatures, dewpoint temperatures, solar radiation, and wind speed over the period of 641 
2011-2020 from the GFDL-ESM2M model. The calculated WBGTsun enters the regression 642 
model as the response variable, while the explanatory variables are air temperatures, dewpoint 643 
temperatures, solar radiation, wind speed, latitude, and corresponding month. We test different 644 
linear and non-linear functions forms for the regression model, and we also run a support vector 645 
machine (SVM). We find that the SVM with a radial kernel provides a good approximation. 646 
But, using a 2nd order polynomial regression slightly outperforms the SVM and other functional 647 
forms in OLS in terms of accuracy, which is indicated by a high value of R2 (see Table SM1). 648 
It should also be noted that estimating polynomial regression is much faster than SVM. Finally, 649 
the estimated coefficients from the 2nd order polynomial regression are used to calculate the 650 
WBGTsun for entire datasets.  651 

This approximation approach has some limitations, however. The sun varies by hour, so does 652 
the heat stress. The Liljegren approach captures the sun component through the azimuth of the 653 
sun. For our analysis, we use the ISIMIP data, which provides only daily levels. To estimate 654 
the WBGTsun using the Liljegren approach, 12 UTC is used for zenith angle calculations. A 655 
more accurate estimation of WBGTsun would require hourly data. So, “hour” would be added 656 
as an additional explanatory variable into the regression model. Ideally, we should also validate 657 
this approximation method against observed WBGTsun. However, to our knowledge, there are 658 
a limited number of observations on WBGT. We consider the Liljegren approach as a 659 
benchmark, which produces the most accurate estimates for WBGTsun.    660 

 661 

 662 

 663 

 664 

 665 
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 666 

Table SM1.1: Regression results. Note: ‘Tas’ stands for air temperatures, ‘dp’ is dewpoint 667 
temperatures, ‘rsds’ is solar radiation, ‘sfcWind’ is wind speed, and ‘lat’ is latitude. Standard 668 
errors are in parentheses.  669 

 2nd order 
polynomial 

(Intercept) 5.505349*** 
 (0.001510) 
Tas 0.414093*** 
 (0.000101) 
Tas2 0.001620*** 
 (0.000002) 
dp 0.185106*** 
 (0.000006) 
dp2 0.006278*** 
 (0.000000) 
rsds 0.005563*** 
 (0.000002) 
rsds2 -0.000004*** 
 (0.000000) 
sfcWind -0.344250*** 
 (0.000040) 
sfcWind2 0.024530*** 
 (0.000005) 
Month -0.004336*** 
 (0.000025) 
Month2 0.000329*** 
 (0.000002) 
lat 0.000172*** 
 (0.000001) 
lat2 -0.000007*** 
 (0.000000) 
R2 0.998313 
Adj. R2 0.998313 
Num. obs. 46590337 
RMSE 0.126821 
***p < 0.001, **p < 0.01, *p < 0.05 

SM2: Regional and sectoral mapping 670 

Table SM2.1: Regional aggregation.  671 
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Regions Countries 

Africa 

Egypt, Morocco, Tunisia, Rest of North Africa, Cameroon, Côte d’Ivoire, Ghana, Nigeria, Senegal, 
Rest of Western Africa, Rest of Central Africa, South Central Africa, Ethiopia, Kenya, Madagascar, 
Malawi, Mauritius, Mozambique, Tanzania, Uganda, Zambia, Zimbabwe, Rest of Eastern Africa, 
Botswana, Namibia, South Africa, Rest of South African Customs Union, Benin, Burkina Faso, 
Guinea, Togo, Rwanda 

East Asia China, Hong Kong SAR China, Japan, South Korea, Mongolia, Taiwan, Rest of East Asia 

Europe 

Austria, Belgium, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Slovakia, 
Slovenia, Spain, Sweden, United Kingdom, Switzerland, Norway, Rest of European Free Trade 
Association, Albania, Bulgaria, Croatia, Romania, Rest of Eastern Europe, Rest of Europe 

Former 
Soviet 
Union (FSU) 

Belarus, Russia, Ukraine, Kazakhstan, Kyrgyzstan, Rest of Former Soviet Union, Armenia, 
Azerbaijan, Georgia, Rest of the World 

North 
America Canada, United States, Mexico, Rest of North America 

Oceania Australia, New Zealand, Rest of Oceania 
South-East 
Asia 

Cambodia, Indonesia, Laos, Malaysia, Philippines, Singapore, Thailand, Vietnam, Rest of Southeast 
Asia, Brunei 

South 
America 

Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, Venezuela, Rest of 
South America, Costa Rica, Guatemala, Honduras, Nicaragua, Panama, El Salvador, Rest of Central 
America, Rest of Caribbean, Dominican Republic, Jamaica, Trinidad & Tobago, Puerto Rico 

South Asia Bangladesh, India, Nepal, Pakistan, Sri Lanka, Rest of South Asia 

West Asia Bahrain, Iran, Israel, Kuwait, Oman, Qatar, Saudi Arabia, Turkey, United Arab Emirates, Rest of 
Western Asia, Jordan 

Table SM2.2: Sectoral aggregation. The abbreviation nec stands for not elsewhere classified.  672 
Sectors Sub-sectors 
Coal Coal 
Construction Construction 

Crops Paddy rice, Wheat, Cereal grains nec, Vegetables, fruit, nuts, Oil seeds, Sugar cane, sugar beet, Plant-
based fibers, Crops nec, Forestry 

Crude oil Oil 
Electricity Electricity 

Food Bovine meat products, Meat products nec, Vegetable oils and fats, Dairy products, Processed rice, 
Sugar, Food products nec, Beverages and tobacco products 

Natural gas Gas, Gas manufacture, distribution 

Livestock Bovine cattle, sheep and goats, horses, Animal products nec, Raw milk, Wool, silk-worm cocoons, 
Fishing 

Manufacturing 

Textiles, Wearing apparel, Leather products, Wood products, Paper products, publishing, Chemical, 
rubber, plastic products, Mineral products nec, Ferrous metals, Metals nec, Metal products, Motor 
vehicles and parts, Transport equipment nec, Electronic equipment, Machinery and equipment nec, 
Manufactures nec, NA 

Oil refinery Petroleum, coal products 

Services Water, Trade, Communication, Financial services nec, Business services nec, Recreational and other 
services, Public Administration, Defense, Education, Health, Dwellings, NA 

Transport Transport nec, Water transport, Air transport 
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SM3: Socio-economic projections 673 

 674 
Fig. SM3.1: Projections of GDP per capita by region. 675 

SM4: Income elasticities 676 

Income elasticities of demand for non-agricultural goods and services are derived from the 677 
GTAP database. To estimate the income elasticities of demand for food products, we use the 678 
FAO and World Bank databases. Specifically, the FAO provides panel data on calories demand 679 
by country and year (see Fig. SM4.1). From the World Bank, we retrieve the time-series data 680 
on GDP per capita by country and year. The Lagrange multiplier test rejected the hull 681 
hypothesis, which implies that either a fixed effects or random effects model is appropriate (i.e., 682 
there are significant different among countries). A Hausman test suggested to use a fixed effects 683 
model because a random effects model turns out to be inconsistent. Therefore, we use a fixed 684 
effects regression to deal with a potential omitted variable bias, because apart from income 685 
there are other county-specific factors (i.e., individual-specific effects), which could affect the 686 
demand for food products.  687 
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 688 
Fig. SM4.1: Demand for food products in calories and GDP per capita in 2011. Source: based 689 

on FAO and World Bank data.  690 

To capture non-linearity in the relationship between calories consumption and income, we 691 
apply a level-log regression. Results from the fixed effects regression model are reported in 692 
Table SM4.1.  693 

Table SM4.1: Fixed effects regression model.  694 
ln(GDP/capita) 167.44*** 
 (5.05) 
R2 0.23 
Adj. R2 0.20 
Num. obs. 3838 
***p < 0.001, **p < 0.01, *p < 0.05 

Income elasticities of demand for food are derived from the estimated regression model as 695 
follows.  696 

𝐶𝐶 = 𝛽𝛽 ∗ ln(𝐺𝐺𝐺𝐺𝐺𝐺) 697 

𝜕𝜕𝜕𝜕
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𝛽𝛽
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 698 
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𝜖𝜖 =
𝛽𝛽
𝐶𝐶
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where C stands for calories consumption, GDP stands GDP per capital, 𝛽𝛽 is the estimated 701 
coefficient (i.e., 166.38), and 𝜖𝜖 is the income elasticity of demand.  702 

We assume that private consumption of unprocessed crops and livestock have the same values 703 
of income elasticities as the demand for food products. Using the estimated income elasticities 704 
of demand for food as well as the income elasticities of demand for other goods and services 705 
obtained from the GTAP database, we calculate levels of subsistence consumption for each 706 
demand category, which are scaled by population growth in dynamic model runs.    707 

SM5: Sectoral productivity  708 

Because production sectors are differently affected by HS to due to different heat exposure 709 
(e.g., agriculture vs. services), an accurate projection of structural changes is crucial for an 710 
economic impact assessment. Apart from consumption preferences, which can change over 711 
time in response to growing income, sectoral productivity is another important factor that drives 712 
a structural change. Empirical research reveals that factor productivity differs by sector. In our 713 
analysis, the calibration of total factor productivity (TFP) of sectors follows the approach 714 
implemented by Britz and Roson (2019). Specifically, TFP of services is endogenously 715 
determined in the reference scenario, and it becomes exogenous during simulations. TFP of 716 
agriculture and manufacturing is defined as 𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟 ∗ 𝑠𝑠ℎ𝑖𝑖,𝑟𝑟,𝑡𝑡:  717 

𝑠𝑠ℎ𝑖𝑖,𝑟𝑟,𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟,𝑡𝑡+1−𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟,𝑡𝑡
𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟,𝑡𝑡

+ 𝑐𝑐 ∗ �𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟,𝑡𝑡+1−𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟,𝑡𝑡
𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟,𝑡𝑡

�
2
  718 

where  𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟 is the total factor productivity of services, 𝑠𝑠ℎ𝑖𝑖,𝑟𝑟,𝑡𝑡 is the shift parameters for sector-719 
specific productivity (i.e., agriculture and manufacturing), 𝑔𝑔𝑔𝑔𝑝𝑝𝑟𝑟,𝑡𝑡 is the GDP per capital in 720 
region r in period t, and a, b, and c are the empirically estimated parameters for sector-specific 721 
productivity growth (see Table SM5.1) taken from the Britz and Roson (2019).   722 

Table SM5.1: Estimated parameters for sector-specific productivity growth. 723 
 Agriculture Manufacturing 

a 0.925391 2.893917 
b 11.99205 -94.8599 
c 291.8147 1680.554 

Source: Britz and Roson (2019) 724 

SM6: Mechanisation of outdoor jobs 725 

To interpolate the relationship between GDP per capita and work intensity, we use a linear 726 
regression model. We consider a range of work intensity levels from 267 to 400 W. The 727 
agricultural sector in countries with the largest number of tractors is assumed to have a work 728 
intensity level of 267 W, whereas for countries with the lowest number of tractors, it is 400 W.  729 
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Table SM6.1: Regression results. The response variable is the level of work intensity, and the 730 
explanatory variable is GDP per capita.  731 

(Intercept) 398.4717*** 
 (0.1721) 
GDP/capita -0.0007*** 
 (0.0000) 
R2 0.4180 
Adj. R2 0.4179 
Num. obs. 5905 
***p < 0.001, **p < 0.01, *p < 0.05  

 732 
Fig. SM6.1: Relationship between income and mechanisation in agriculture in 2000. Based on the World Bank 733 

data.  734 

 735 
Fig. SM6.2: Interpolated relationship between income and work intensity in agriculture.  736 
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SM7: Supplementary results  737 

 738 
Fig. SM7.1: Changes in global private consumption under RCP2.6 and RCP8.5 compared to the reference 739 

scenario with no climate change. The solid and dashed lines show the mean values and the shaded areas indicate 740 
uncertainties of the estimated impacts. Mechanisation stands for decreasing work intensity through 741 

mechanisation driven by an economic growth. “Hothaps” stands for the epidemiological exposure-response 742 
function, while “ISO” implies that ISO: 7243:1989 standards are used to assess heat stress impacts on worker 743 

productivity.     744 

The ANOVA analysis (see Fig. SM7.2) is conducted as follows. First, using the results from 745 
the GRACE model, we run a linear regression, where the response variable is relative changes 746 
in global GDP while explanatory variables are the categorical variables indicating the setting 747 
and parametrisation of model runs. We conduct the ANOVA analysis for four explanatory 748 
variables, such as climate models, labour mobility, RCPs, and substitution elasticities. The 749 
ANOVA analysis is then carried out on the obtained regression results. To calculate the 750 
proportions of variance explained, which indicates the relevance of variables, we use the 751 
incremental sums of squares from the ANOVA table. 752 
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 753 
Fig. SM7.2: Analysis of variance for global GDP. The Hothaps function is used to estimate the heat impacts on 754 
worker productivity. The legend “Climate models” stands for the uncertainty of GCMs, “Labour mobility” is for 755 

the uncertainty of labour mobility (i.e., perfectly mobile vs. imperfectly mobile among sectors), “RCPs” is for 756 
the uncertainty of climate projects (i.e., RCP2.6 vs. RCP8.5), “Substitution elasticities” is for the uncertainty of 757 

substitution elasticities among primary factors (i.e., 0.3-0.7), and “Residuals” is for interactions terms.  758 

 759 
Fig. SM7.3: A model comparison of average changes in global GDP under RCP2.6 and RCP8.5 compared to the 760 
reference scenario with no climate change. The Hothaps function is used to estimate the heat impacts on worker 761 

productivity.    762 
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 763 
Fig. SM7.4: Changes in total private consumption by region under RCP2.6 and RCP8.5 by 2050 and 2100 764 

compared to the reference scenario with no climate change. The Hothaps function is used to estimate the heat 765 
impacts on worker productivity. The error bars indicate the uncertainties around the estimates. The dashed read 766 
line shows unweighted average values across all regions, and the error bars indicate the uncertainties around the 767 

estimates. 768 
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 769 
Fig. SM7.5: Average heat-induced changes in worker productivity and production by 2100 under RCP2.6 and 770 
RCP8.5 relative to the reference scenario with no climate change. The Hothaps function is used to estimate the 771 

heat impacts on worker productivity. The dashed lines show the mean values across regions. 772 
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 773 
Fig. SM7.6: Average heat-induced changes in private consumption, exports, and imports by 2100 under RCP2.6 774 

and RCP8.5 compared to the reference scenario with no climate change. The Hothaps function is used to 775 
estimate the heat impacts on worker productivity. 776 

 777 
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