MSc: Changes in radiative forcing due to clear-cutting

Iris Mužić¹, Patrik Vestin¹, Anders Lindroth¹, Meelis Mölder¹, Tobias Biermann^{1,2}, Michal Heliasz^{1,2}, Janne Rinne¹

¹Department of Physical Geography and Ecosystem Science, Lund University, Sweden

²Centre for Environmental and Climate Research, Lund, Sweden

in Sweden

AIM

to determine the net climatic effect of clear-cutting in Sweden by comparing radiative forcing by albedo change and radiative forcing by CO₂ release due to clear-cutting in Sweden

STUDY SITES

 Norway spruce and Scots pine forests

Svartberget forest and Degerö mire (64°N)

Norunda forest and clear-cut (60°N)

Hyltemossa forest and clear-cut (56°N)

CONCLUSION (MSc)

Based on available data, clear-cutting in southern and central Sweden had a warming effect on climate while in northern Sweden clear-cutting had a net cooling effect.

PhD: The role of landatmosphere interactions on temperature variability and extremes in Fennoscandia

Iris Mužić^{1,2}, Terje K. Berntsen², Øivind Hodnebrog¹, Jana Sillmann³, Yeliz Yılmaz²

¹CICERO Centre for International Climate Research, Oslo, Norway

²Department of Geosciences, University of Oslo, Norway ³University of Hamburg, Germany

AIM

to investigate the coupling effect between terrestrial biogeophysical forcing and atmospheric blocking for the assessment of high-temperature extremes in Fennoscandia

STUDY AREA

WRF-CTSM domain extent

RESULTS

- latitude increase: radiative forcing by albedo change 1 radiative forcing by CO₂ release
- differences in **summer albedo** in Sweden have higher contribution to radiative forcing than the winter albedo

EXPECTED RESULTS

- evaluation of the state-of-the-art coupled climate model WRF-CTSM
- assessment of the contribution of land cover to severity of heatwaves during atmospheric blocking events in the present and future climate

Contact

