MSc: Changes in radiative forcing due to clear-cutting Iris Mužić¹, Patrik Vestin¹, Anders Lindroth¹, Meelis Mölder¹, Tobias Biermann^{1,2}, Michal Heliasz^{1,2}, Janne Rinne¹ ¹Department of Physical Geography and Ecosystem Science, Lund University, Sweden ²Centre for Environmental and Climate Research, Lund, Sweden in Sweden ### **AIM** to determine the net climatic effect of clear-cutting in Sweden by comparing radiative forcing by albedo change and radiative forcing by CO₂ release due to clear-cutting in Sweden ## **STUDY SITES** Norway spruce and Scots pine forests Svartberget forest and Degerö mire (64°N) Norunda forest and clear-cut (60°N) **Hyltemossa** forest and clear-cut (56°N) ## **CONCLUSION (MSc)** Based on available data, clear-cutting in southern and central Sweden had a warming effect on climate while in northern Sweden clear-cutting had a net cooling effect. # PhD: The role of landatmosphere interactions on temperature variability and extremes in Fennoscandia Iris Mužić^{1,2}, Terje K. Berntsen², Øivind Hodnebrog¹, Jana Sillmann³, Yeliz Yılmaz² ¹CICERO Centre for International Climate Research, Oslo, Norway ²Department of Geosciences, University of Oslo, Norway ³University of Hamburg, Germany AIM to investigate the coupling effect between terrestrial biogeophysical forcing and atmospheric blocking for the assessment of high-temperature extremes in Fennoscandia #### **STUDY AREA** WRF-CTSM domain extent ## **RESULTS** - latitude increase: radiative forcing by albedo change 1 radiative forcing by CO₂ release - differences in **summer albedo** in Sweden have higher contribution to radiative forcing than the winter albedo ## **EXPECTED RESULTS** - evaluation of the state-of-the-art coupled climate model WRF-CTSM - assessment of the contribution of land cover to severity of heatwaves during atmospheric blocking events in the present and future climate Contact