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Abstract
Flooding events associated with extreme precipitation have had large impacts in Norway. It is well known that these heavy 
precipitation events affecting Norway (and other parts of Europe) are strongly associated with atmospheric rivers (ARs). We 
assess trends in Norwegian AR characteristics, and the influence of AR variability on extreme precipitation in Norway. We 
first evaluate the ability of a high-resolution global climate model (EC-Earth) to simulate ARs, compared to ERA-Interim. 
We evaluate the EC-Earth simulated relationship between ARs and extreme precipitation in western Norway, compared to 
the observed relationship. We find that EC-Earth is able to simulate well the statistics of AR events and the related precipi-
tation. The intensity and frequency of ARs making landfall in Norway both increase by the end of the century and we find 
a shift in seasonality of AR events in the future period. In two regions on the west coast, the majority of winter precipita-
tion maxima are associated with AR events (> 80% of cases). Next we assess the influence of AR variability on extreme 
precipitation. A non-stationary extreme value analysis indicates that the magnitude of extreme precipitation events in these 
regions is associated with AR intensity. Indeed, the 1-in-20 year extreme event is 17% larger when the AR-intensity is high, 
compared to when it is low. There is little influence of specific humidity on the variability of extreme precipitation after all 
variables are de-trended. Finally, we find that the region mean temperature during winter AR events increases in the future. 
In the future, when the climate is generally warmer, AR days will tend to make landfall when the temperature is above the 
freezing point. The partitioning of more precipitation as rain, rather than as snow, can have severe impacts on flooding and 
water resource management.

Keywords  Atmospheric river · Extreme precipitation · Norway · Climate change · Global climate model · Extreme value 
theory

1  Introduction

Flooding can have large impacts on society and the economy 
(Kousky 2014). In Norway, flooding events have caused sub-
stantial damages. In 2005 for example, an extreme precipi-
tation event in south-western Norway caused flooding and 
landslides that damaged property, injured many people, and 
caused the loss of one life (Stohl et al. 2008). This extreme 
event was linked to an atmospheric river (AR) (Stohl et al. 

2008). In October 2014, flooding in Flåm and Odda was 
associated with an AR event (Langsholt et al. 2015; Schaller 
et al. 2019). Globally, ARs have been linked to extreme 
winds (Waliser and Guan 2017), storm surge (Ridder et al. 
2018), and precipitation (Lavers et al. 2010; Lavers and Vil-
larini 2013; Ramos et al. 2015).

Both climate change and natural variability can play a 
role in changing the nature of extreme precipitation. Syn-
optic scale features, such as ARs, have a well-established 
influence on regional precipitation extremes (Lavers et al. 
2010; Lavers and Villarini 2013; Ramos et al. 2015). The 
link between extreme Norwegian precipitation and atmos-
pheric rivers is clear from the observational record (Ben-
edict et al. 2019). Azad and Sorteberg (2017) show that 
55–58 of the extreme ’daily precipitation events’ (defined 
as days where 10–20 stations have precipitation > 99.5%) 
that occurred between 1900–2009 were associated with 
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ARs, and that most of these events occurred in November, 
December and January (Azad and Sorteberg 2017). It has 
been demonstrated that in most years 1–2 AR events con-
tribute 30–40% of the total winter snow pack (snow water 
equivalent) on the west coast of North America (Guan 
et al. 2010). Although it is located much further north, 
the Norwegian west coast has a similar geography with 
a westerly flow directed over a large mountain range, and 
it is clear that ARs have a large influence on Norwegian 
precipitation (Azad and Sorteberg 2017).

Global climate model studies indicate that the total wet-
day precipitation, the number of heavy precipitation days 
per year, and the number of very wet days all increase 
in northern Europe by 2081–2100, under RCP8.5 (Sill-
mann et al. 2013; Seneviratne et al. 2012; Collins et al. 
2013). Further, there is a significant increase in the winter 
maximum five-day rainfall amounts in northern Europe 
(Sillmann et al. 2013). It is generally accepted that such 
projected increases in precipitation are associated with the 
increased water holding capacity of a warmer atmosphere 
(Held and Soden 2006).

Several papers have examined projected changes in 
ARs in North America (Gao et al. 2015; Payne and Mag-
nusdottir 2015; Gershunov et al. 2019), British Columbia 
(Radic et al. 2015), the Iberian Peninsula (Ramos et al. 
2015), Britain (Lavers et al. 2013), and Europe, including 
Norway (Gao et al. 2016), and globally Massoud et al. 
(2019) and Espinoza et al. (2018). It has been established 
that CMIP5 models, including EC-Earth, can simulate the 
statistics of ARs well (Radic et al. 2015; Gao et al. 2015; 
Ramos et al. 2016). Indeed, it is projected that there will 
be an increase in number and intensity of AR days under 
RCP8.5 (Ramos et al. 2016; Gao et al. 2015), and that the 
number of ARs reaching Europe will double by 2074–2099 
(RCP8.5) (Ramos et al. 2016). It has been shown that most 
of the AR frequency increase is driven by thermodynamic 
changes (Gao et al. 2015; Radic et al. 2015), but dynamic 
changes, such as changes in winds associated with a shift 
in the mid-latitude jet, also play a small role for North 
America (Gao et al. 2015; Shields and Kiehl 2016).

The moisture in ARs is generally associated with extra-
tropical cyclones (in the warm core and the trailing cold 
front) (see Stohl et al. 2008), and references within). While 
it is commonly thought that ARs have only tropical mois-
ture sources, it has been shown that local, non-tropical 
sources of moisture make a substantial contribution to 
the precipitation that reaches Norway (Stohl et al. 2008), 
through the continuous cycling of moisture within the 
cyclone (Dacre et al. 2015). In an extra-tropical cyclone, 
the cold front moves towards the warm front causing a 
narrowing of the warm sector and a band of high water 
vapor along the cold front (Sodemann and Stohl 2013; 
Dacre et al. 2015). This view highlights the importance 

of extra-tropical cyclones for the moisture transport and 
precipitation associated with ARs.

The use of a high-resolution global climate model was 
considered an essential part of this research for several 
reasons. First, it is generally accepted that high horizontal 
resolution is necessary for the simulation of extreme events, 
particularly for precipitation. Second, it is well known that 
ARs interact with local topography to produce extreme 
precipitation amounts. It follows that a model must realisti-
cally represent the topography for the accurate simulation of 
AR-related precipitation. There is a substantial difference in 
the largest mountains in Norway in the low-resolution ver-
sion of EC-Earth used in the CMIP5 experiment (1118 m), 
compared to the high-resolution model used in this study 
(1582 m). Third, high resolution is necessary to simulate 
well the small-scale sharp frontal structures that are associ-
ated with AR development. This is demonstrated by Zappa 
et al. (2013), who showed that CMIP5 models, including 
EC-Earth, with higher horizontal resolution have a better 
simulation of the cyclone number and intensity, and the 
storm-track position and orientation than those models with 
a lower spatial resolution.

It is important to study the relationship between AR vari-
ability and extreme precipitation, and future changes in AR 
themselves. Both of these features will likely influence AR-
induced precipitation in Norway. This will be one focus of 
the current study. In addition to examining changes in AR 
over time, we use extreme value theory to model the rela-
tionships between ARs and extreme precipitation in Nor-
way. This framework has been used previously to model the 
relationships between soil moisture and extreme European 
maximum temperatures (Whan et al. 2015a), El Nino-South-
ern Oscillation and extreme precipitation in North America 
(Zhang et al. 2010; Cannon 2015; Whan and Zwiers 2016), 
and atmospheric blocking and extreme minimum tempera-
tures (Sillmann et al. 2011; Whan et al. 2015b). The next 
section will outline the data sets and methods used in the 
study, followed by results, discussion and conclusions.

2 � Data and methods

2.1 � EC‑Earth and observations

We use global climate model simulations from EC-Earth 
with the same model setup as in (Haarsma et al. 2013). 
The horizontal resolution is T799 L91 (~ 25 km). We 
use six ensemble members of 5 years from four periods: 
Past (1850–854), Current (2002–2006), Near-Future 
(2030–2034) and Far-Future (2094–2098). This results in 
30 independent years per period. Longer runs that span a 
larger range of the natural variability would be desirable but 
are computationally expensive and not feasible. These years 
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were chosen to include the dominant modes of climate vari-
ability Haarsma et al. (2013), but it is unlikely that the full 
range of variability can be sampled with such a modeling set 
up. The future simulations (Near-Future and Far-Future) are 
based on the RCP 4.5 scenario (van Vuuren et al. 2011). The 
six member ensemble was generated by taking one of the 
first 6 days of October from the previous year as the initial 
conditions and running the model forward until 1 January. 
The spin up period is then discarded. This method resulted 
in sufficient spread in the ensemble that the members can be 
treated as independent after January 1. See Haarsma et al. 
(2013) for more details on the model setup.

From EC-Earth, we also use precipitation, 2 m tempera-
ture and specific humidity, as well as vertically integrated 
water vapor transport (IVT) in EC-Earth and ERA-Interim 
(as observations), and use this to define observed atmos-
pheric rivers (see the next section for details on this proce-
dure). The horizontal resolution of ERA-Interim (~ 0.75°, 
Dee et al. 2011), is much coarser than that of EC-Earth.

In both EC-Earth and ERA-Interim, IVT is calculated 
from the vertical integral of specific humidity (Q), and the 
U and V components of wind across five levels between 850 
and 200 hPa, as well as surface pressure (p) and the accel-
eration due to gravity (g). We are constrained by the avail-
able model levels in EC-Earth. We calculate IVT as follows 
(Eq. 1):

We use precipitation observations from seNorge2, a 1 km 
gridded dataset for Norway (Lussana et al. 2018). In the 
observations and in each period in EC-Earth, we calculate 
the extended winter (October–March) maximum precipita-
tion at each grid cell. We define two regions where AR have 
a large impact on precipitation; the mid-West Coast (mWC) 
and south-West Coast (sWC). The mWC is a polygon con-
tained in the region: 9° E–18° E and 64° N–69.5° N. sWC 
is a square with the extent: 4° E–7.5° E and 57.8° N–63° N 
(Fig. 1b).

2.2 � Atmospheric river definition

We use an automatic atmospheric river detection algorithm 
to define atmospheric rivers from 6-h integrated water vapor 
transport (Lavers and Villarini 2013; Lavers et al. 2013; 
Gao et al. 2016). The back-tracking algorithm that we use 
is different to other object oriented or geometric approaches 
(Sellars et al. 2015; Guan and Waliser 2015), but it has been 
shown that there is high-agreement between the back-track-
ing and object oriented methods (Guan and Waliser 2015). 
The back-tracking algorithms are based on IVT exceedances 
above a certain threshold, the choice of threshold is critical. 
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A low threshold will result in too many days being classified 
as AR-days, while a high threshold will exclude all but the 
strongest events. It is common practice to calculate the IVT 
thresholds relative to the model’s own climatology (Warner 
et al. 2014). The comparison between different time periods 
can use either (1) a varying IVT threshold for each period, 
which will show how the most extreme events of each period 
change, and (2) a fixed IVT threshold for all periods, which 
shows the relative changes in AR events.

First, we define a variable IVT threshold in each data 
set (ERA-Interim and EC-EARTH) and period (Past, Cur-
rent, Near-Future, Far-Future). For this threshold, we take 
the 95% percentile of IVT along the Norwegian coast, from 
58 to 67° N (purple dots in Fig. 1). The selected thresh-
olds can be seen in (Fig. 1). It is clear that IVT increases 
from the Past to the Far-Future in EC-EARTH, from 347 to 
478 kg/m/s. The selected thresholds in ERA-Interim using 
all years (1980–2016) is somewhat lower than the current 
period in EC-EARTH. Restricting ERA-Interim to the same 
years reduces the discrepancy somewhat. Remaining differ-
ences are likely due to differences in horizontal resolution. 
This threshold is similar to that used previously (Ramos 
et al. 2015, 2016). Next, we calculate AR events from a 
fixed IVT threshold, which allows us to examine changes 
compared to a fixed climate period, similarly to (Warner 
et al. 2014). Here we use the 95% percentile of the current 
period IVT (368 kg/m/s)

Second, at each time step we search the grid boxes along 
the Norwegian coast to find cases where the AR IVT exceeds 
the IVT threshold (fixed or variable). If the maximum coastal 
IVT value exceeds the threshold, we trace backwards and 
find the largest adjacent IVT values, until the path of con-
secutive grid cells that exceeds the IVT threshold is longer 
than 2000 km. An example of this from ERA-Interim can 
be seen in Fig. 1. Finally, we ensure that the AR event is of 
sufficient length, by only retaining AR events that last for at 
least three time steps (18 h). This definition means that there 
is at least 6-h between AR events, which is shorter than some 
other definitions such as Lavers and Villarini (2015) who 
consider AR events as distinct if they are separated by 24 
h. While our definition is somewhat less strict, it likely still 
distinguishes between different storm events in most cases.

From this set of AR events, we can define two indices; 
(1) AR intensity, that is the average IVT at landfall, and (2) 
AR frequency, that is the average number of AR events that 
occur each time period.

2.3 � Generalised extreme value distribution

We use a generalized extreme value (GEV) distribution 
(Coles 2001) to assess the relationship between extreme 
precipitation and covariates (i.e. AR intensity and spe-
cific humidity). The GEV describes the behavior of block 
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maxima, and so we fit the GEV to the winter (Octo-
ber–March) maximum of daily regional mean precipita-
tion. The GEV is described by three parameters, the loca-
tion parameter ( � ), the scale parameter ( � ), and the shape 
parameter ( � ). The cumulative distribution function is shown 
in (Eq. 2):

We fit stationary models (i.e. models with no covariates, 
M0) to each period separately, and we also pool data across 

(2)G(x) = exp

[

−
(

1 + �

(

x − �

�

))(−1∕�)
]

.

periods to increases the sample size. Pooling data results 
in a total sample size of 120 (i.e. 6 ensemble members × 
4 periods × 5 years per period). The larger sample size is 
necessary in fitting the additional parameters in the non-
stationary models. In these models, we allow either only the 
location parameter to vary linearly with one covariate (M1), 
or both the location and scale parameters to vary with one 
covariate (M2). Equation (3) shows how � depends linearly 
on a single covariate, z. We test the significance of includ-
ing additional covariates in nested models, using a likeli-
hood ratio test (LRT). We indicate below in which statistical 
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Fig. 1   a IVT at 0000 UTC on October 26, 2014 from ERA-Interim 
for the North Atlantic region. The purple dots indicate the coastal 
coordinates used to detect time steps where the IVT exceeds the 
threshold. The red crosses show the grid cells retained in the track-
ing algorithm that are used to define an AR time step. b Same as a, 

but focused on the Norwegian region, and showing the mid-West 
Coast (mWC) and south-West Coast (sWC) regions. c IVT thresholds 
(kg/m/s) for each period (Past = 1850–1854; Current = 2002–2006; 
Near-Future = 2030–2034; Far-Future = 2094–2098) in EC-Earth 
(blue) and ERA-Interim (1979–2016; red)
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models the inclusion of additional covariates significantly 
improves model fit ( p < 0.1).

The covariates that we use are the maximum AR intensity 
(defined using the fixed threshold) and specific humidity. We 
use IVT to define ARs. IVT is calculated based on specific 
humidity, winds and surface pressure. We fit models using 
specific humidity from the AR as a covariate in an attempt 
to shed light on whether the influence of AR events stems 
solely from thermodynamic changes, which can be repre-
sented by variability in specific humidity. We detrend the 
covariate data by removing the period mean and dividing by 
the period standard deviation. We detrend precipitation data 
by scaling by the region mean precipitation.

We then calculate the 20-year return values of the station-
ary model and for non-stationary models when the covari-
ates are low and high (i.e. at the 1st  and 99th percentiles). 
This return value is then the magnitude of the 1-in-20 year 
extreme event that we can expect when the covariate is in a 
particular state. Confidence intervals are calculated around 
this return value using the normal approximation (the delta 
method) in the ’extRemes’ package in R (Gilleland and Katz 
2016). More information on this method can be found in 
Coles (2001). We simulate the expected precipitation given 
a particular regime of the covariate by taking one thou-
sand random draws from GEV distributions with the GEV 
parameters adjusted for high (99th percentile) and low (1st 
percentile) values of the covariate. From this we are able 
to reproduce the expected probability density function of 
precipitation, given a particular value of the covariate. All 
extreme value analysis uses the package ’extRemes’ (Gille-
land and Katz 2016) from the R statistical computing envi-
ronment (R Core Team 2019).

3 � Results

3.1 � Model evaluation

We first evaluate the simulation of AR events in the cur-
rent period of EC-Earth compared to ERA-Interim. There 
is a similar average number of AR events per year in ERA-
Interim and the current period in EC-Earth (Fig. 2a). Both 
ERA-Interim and the current period of EC-Earth have more 
AR events occurring in winter compared to summer. The 
annual cycle of AR frequency is well captured by EC-Earth 
compared to ERA-Interim, with most events occurring in 
September–January (Fig. 3).

The intensity of AR events in the current period of EC-
Earth is somewhat higher than in ERA-Interim, particularly 

(3)�(z) = �0 + �1z.

in summer (Fig. 4). This is due to the lower values asso-
ciated with the 95th percentile in EC-Earth versus ERA-
Interim, which is likely due to the fact that the ERA-Interim 
data set spans a longer time period (1979–2016) and has a 
lower horizontal resolution.
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To assess the influence of AR events on winter precipita-
tion extremes, we find the winter precipitation maxima at 
each grid cell, and then calculate the percentage of winter 
precipitation maxima that are associated with AR events. 
The spatial pattern of AR influence is well captured by 
EC-Earth. In both the model and observations, two regions 
become clearly evident where a large fraction of winter pre-
cipitation maxima are associated with AR events (mid-West 
Coast, mWC, and south-West Coast, sWC; Fig. 5). In these 
regions, up to 95% of winter precipitation extremes are asso-
ciated with AR events. There is not always a linear increase 
from the Past period to the Far-Future period, indicating 
that variability is evident in both regions but particularly in 
the mWC. This is expected given the highly variable nature 
of precipitation on inter-annual and inter-decadal scales. 
We can compute the Perkin’s Skill Score (PSS) to compare 
the similarity between two density functions (Perkins et al. 
2007), in this case the distribution of regional precipitation 
in EC-Earth and ERA-Interim. The PSS for the observations 
and the Past EC-Earth simulation on the mWC is 0.83, sug-
gesting that the distributions are quite similar (where 1 is 
perfectly similar, and 0 is completely different) despite dif-
ferences in the resolution. Overall, the precipitation patterns 
and the fraction of extremes associated with ARs are both 
well simulated by EC-Earth.

Finally, we compare the region-mean winter precipitation 
maxima. To do this, we take the winter maxima at each grid 
cell and then average over all grid cells in the region (sWC, 

mWC). The magnitude of region-mean winter maximum 
precipitation in the current period of EC-Earth is compara-
ble to ERA-Interim, as ERA-Interim lies within the ensem-
ble spread, although the ensemble mean is slightly slower 
than ERA-Interim (Fig. 6).

3.2 � Future changes in atmospheric rivers

We examine changes in the frequency of AR events using 
two IVT thresholds; a threshold that is fixed to the current 
climate, and a variable threshold that is specific to each time 
period. Using the current climate as a reference, Fig. 2a 
shows a substantial increase in the number of AR events 
annually, and in both winter and summer, during the Far-
Future period. This is expected given a warmer atmosphere 
that holds more water, and so higher IVT can be expected 
given an increase in the specific humidity. Indeed both the 
mean and maximum values of temperature and specific 
humidity increase from the Past to the Far-Future (Table 1). 
If AR events are defined using a variable IVT threshold, 
there is a small increase in the number of events per year 
in the Far-Future period, but this increase is driven mostly 
by the increased number of AR events in summer. Indeed, 
an increase in summer AR events is evident using both IVT 
thresholds (Fig. 2a, b).

In ERA-Interim, and the Past, Current and Near-Future 
periods of EC-Earth, there are more AR events in winter 
than in summer. However, in the Far-Future period, the sea-
sonal differences are reduced, and there are an equal num-
ber of AR events in winter and summer (Fig. 2a, b). The 
increased number of AR events in the Far-Future using a 
variable IVT threshold is primarily driven by increases in 
July–September (Fig. 3b). The summer increase in the Far-
Future period using a fixed IVT threshold is evident in all 
months except May, but is particularly large in July–Sep-
tember (Fig. 3a).

In addition to becoming more frequent in the Far-Future, 
AR events are more intense, regardless of the IVT thresh-
old used to define AR events. This result is robust across 
AR the two IVT threshold types tested here (fixed and vari-
able) and is evident in both summer and winter, as we see 
in Fig. 4 that the probability density function for the Far-
Future shifts to the right. The increase in AR intensity is 
larger in the Far-Future with a variable IVT threshold as the 
threshold is higher and there are thus fewer low IVT values 
included. However, even with a fixed threshold there is a 
marked increase in the intensity in the Far-Future (Fig. 4).

3.3 � Extreme precipitation and atmospheric rivers

The percentage of winter precipitation extremes that are 
associated with AR events is relatively steady for the Past, 
Current and Near-Future periods. This faction increases 
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substantially in the Far-Future period (Fig. 5). For the 
sWC, the regional mean percentage of winter maxima 
that co-occur with an AR events increases from ∼ 78% in 
the Past, Current and Near-Future periods, to 83% in the 
Far-Future, with over 90% of precipitation winter max-
ima associated with AR events at many locations. On the 
mWC, the region-mean increase is more substantial, with 
an increase from around 55% of winter maxima associated 
with ARs in the Past, Current and Near-Future periods, to 
75% in the Far-Future (Fig. 5). Overall, it is clear that a 
larger fraction of regional-mean precipitation events are 
associated with ARs in the Far-Future.

There are few changes in the magnitude of the region-
mean winter precipitation maxima from the Past to the 
Near-Future periods, and it is only in the Far-Future that 
we see a substantial increase in the precipitation amounts. 
The region-mean winter maxima is around 35 mm/day in 
the mWC and around 55 mm/day in the sWC in the Past, 
Current and Near-Future periods. There is an increase in 
the Far-Future period, particularly in the sWC. For the 
mWC there is a small increase from the Near-Future to 
the Far-Future periods but the difference is likely not sig-
nificant (Fig. 6).

Fitting the stationary models to each period separately 
shows that precipitation extremes are larger in magnitude 
on the sWC (the 1-in-20 year return value is ~ 75 mm/day), 
compared to the mWC (where the 1-in-20 year return value 
is ~ 45 mm/day). There is a small increase in the magnitude 
of the 1-in-20 year extreme event in the Far-Future period, 
so that it is expected that a region mean value of ~ 80 mm/
day would fall once every 20 years (Fig. 7a). This increase is 
consistent with the increase in precipitation shown in Fig. 6. 
The 95% confidence intervals around these estimates are 
wide, particularly in the Past period, and they are generally 
overlapping. This is likely due to the small sample size (n = 
30) used when fitting to each period separately.

Next, we explore the influence of covariates (AR and Q) 
on extreme precipitation in a non-stationary GEV model. 
Ideally we would fit the non-stationary GEV models to a 
high-resolution continuous time series, but, unfortunately, 
no such series is currently available. We pool data over the 
four distinct periods (Past to Far-Future) to increase the sam-
ple size.

In the pooled data set, the magnitude of the 1-in-20 year 
extreme event is 76 mm/day on the sWC and 44 mm/day on 
the mWC (stationary model in Fig. 7b). This means that we 
can expect an extreme rainfall event of this size, on average, 
once in every 20 years. The non-stationary analysis shows 
the influence of the following covariates on the magnitude 
of extreme events; the maximum AR intensity and specific 
humidity (Q). For both regions, increases in the covariates 
(more specific humidity or a more intense AR) are associ-
ated with larger extreme precipitation events. This means 

that the extreme event that is expected to occur once in 20 
years is of a larger magnitude when Q or AR intensity are 
high, compared to when they are low.

High values of AR intensity (i.e. an intense AR event) 
and specific humidity both result in an extreme event that 
is substantially larger than the extreme event that could be 
expected with a weak AR event. For example, the 1-in-20 
year extreme event for the sWC is a region-mean precipita-
tion amount of > 80 mm/day when AR are intense, com-
pared to < 70 mm/day when ARs are weak. Both covari-
ates result in a 20–23% increase in the magnitude than the 
20-year return value. There are few differences in the mean 
estimates of the 20-year return values from models using 
these two covariates.

It is well known that a warmer atmosphere has a higher 
water holding capacity, and that this results in higher atmos-
pheric humidity and precipitation (Byrne and O’Gorman 
2018). Use of the raw data where both the covariates and 
precipitation contain trends will likely artificially increase 
the strength of the relationship. Due to the trend, the strong-
est AR events tend to be found in the Far-Future period, but 
not all strong events are exclusively in this period. Indeed, 
only half the AR events that exceed the 95th percentile of the 
current period’s IVT distribution are found in the Far-Future 
period, with the most intense AR events in the other periods 
also exceeding this percentile. To test the robustness of these 
results, we next remove the trend in all variables (precipita-
tion, AR intensity and specific humidity), and fit non-sta-
tionary GEV models (Fig. 7c). Once de-trended, we see that 
there is little separation between the 1-in-20 year extreme 
events expected when specific humidity is low or high. The 
confidence intervals are overlapping and there is a less than 
4% difference in the mean estimate. This means that there is 
no difference in the magnitude of the 1-in-20 year extreme 
event that can be expected when specific humidity is high or 
low. The strong and significant influence that AR intensity 
has on extreme precipitation remains, with around a 17% 
increase in the magnitude of the extreme event during an 
intense AR event, compared to a weak event. This confirms 
the influence of AR intensity on the magnitude of extreme 
precipitation events. Variability in extreme precipitation is 
strongly linked to the intensity of the AR event, as more 
intense AR events are associated with an increase in the 
1-in-20 year return value in both regions. These results sug-
gest that specific humidity cannot explain all the influence 
that AR have on extreme precipitation, and suggests that the 
other variables used to define an AR event (surface pressure 
and both u and v winds) may play an important role.

A covariate, such as AR intensity, can influence the dis-
tribution of precipitation in multiple ways. A covariate can 
result in a shift in the mean, to higher or lower values with-
out influencing the spread of the distribution. On the other 
hand, a covariate can influence both the mean and the spread 
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of the distribution, resulting, for example, both a larger 
mean and spread. These two examples can result in differ-
ent impacts on society. We fit non-stationary models with 
covariates on both the location ( � ) and scale ( � ) parameters 
(M2 in Fig. 7b) to assess the influence of the covariates on 
the first two moments of the precipitation distribution. The 
LRT shows that the M2 model is not significant compared 
to the M1 model on the mWC. On the sWC the fit of the 
model is significantly improved by including AR intensity 
as a covariate on the scale parameter. This suggests that the 
intensity of an AR event not only shifts the precipitation to 
larger values (shifting the location parameter), but it also has 
a significant influence on the spread in the distribution. This 
effect is evident in (Fig. 8).

We reconstruct the probability density function of mWC 
and sWC precipitation estimated from GEV parameters that 
are adjusted according to high and low values of both AR 
intensity and specific humidity. There is a substantial shift 
towards high precipitation amounts in both regions when 
the location parameter is allowed to vary with both specific 
humidity and AR intensity (Fig. 8, top row, red v blue solid 
lines), as more intense AR events or high levels of specific 
humidity are associated with larger precipitation amounts.

The spread of the precipitation distribution can also vary 
when a covariate is also included in the estimation of the 
scale parameter (M2). In the sWC, there is a substantial wid-
ening of the conditional distribution of precipitation given 
that AR intensity is high, and a narrowing of the precipita-
tion distribution when AR intensity is low (Fig. 8, bottom 
row). The distribution of precipitation conditional on spe-
cific humidity behaves similarly, but the differences between 
low and high values of the covariate are not as pronounced.

Finally, we examine the partitioning of extreme winter 
precipitation between rain and snow. Figure 9 shows the 
regional mean temperature and the percentage of the region 
that is below freezing on AR days and non-AR rain days. 
The sWC is generally warmer than the mWC, as expected. 
Generally, AR days are warmer and have a smaller frac-
tion of the region that is below zero, than non-AR rain days 
(Fig. 9). This is consistent with the south-westerly airflow 
associated with ARs. The increase in regional mean temper-
ature and decrease in the regional freezing fraction is linear 
from the Past to the Far-Future. In the sWC, the regional 
mean temperature of AR events in all periods is above zero 
and less than 50% of the area is below zero, indicating that 
precipitation will mostly fall as rain rather than snow. For 

non-AR rain days, there is a shift from winter days with sWC 
regional mean temperatures below zero to those with tem-
peratures above zero in the Far-Future period, and a decrease 
in the fraction of the region that is below zero. In the mWC, 
all non-AR rain days have regional mean temperatures below 
zero and more than half the region is below zero, even in the 
Far-Future period, indicating that the majority of precipita-
tion would fall as snow. In the Past and current periods, AR 
events have regional mean temperatures below zero and the 
majority of the region is below zero, suggesting that most 
precipitation will fall as snow rather than rain. However, 
in the Near-Future period, the regional mean temperature 
fluctuates around the freezing point, while in the Far-Future 
period, AR events have temperatures above zero with the 
majority of the region’s temperatures above zero. This indi-
cates that by the end of the century, more AR precipitation 
will be falling as rain rather than snow in the mWC region.

4 � Discussion and conclusions

We are interested in the future changes in atmospheric river 
(AR) events, and on the influence that AR variability has on 
extreme precipitation. We define a set of AR events from 
integrated water vapor transport (IVT) in observations 
(ERA-Interim) and four time-slices in the global climate 
model, EC-Earth. We verify that the simulation of AR fre-
quency and intensity in EC-Earth is comparable to ERA-
Interim. We then show that AR events become more frequent 
in the future, compared to the present climate, and that the 
intensity of ARs increases in the future. We identified two 
regions where ARs have the largest influence on Norwegian 
precipitation; the mid-West Coast and the south-West Coast.

Fig. 5   Percentage of winter maxima precipitation in a observations 
(ERA-Interim and seNorge2), and b each period in EC-EARTH 
that are associated with an AR event, defined with fixed threshold. 
Black lines outline two regions where ARs have a large influence on 
extreme precipitation; the mid-West Coast (mWC) and the south-
West Coast (sWC)
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Fig. 7   a The 20-year return 
values (RV20) of the winter 
maxima in the mid West Coast 
(mWC, circle) and the south 
West Coast (sWC, triangle) 
from the stationary GEV mod-
els fit separately to each period. 
b The RV20 from the stationary 
and non-stationary GEV models 
fit to the pooled data in the mid-
West Coast (mWC, left) and 
south-West Coast (sWC, right). 
Covariates in the non-stationary 
models are specific humidity 
(Q) and AR intensity. M1 mod-
els have a covariate on the loca-
tion parameter ( � ). M2 models 
have a covariate on the location 
and scale parameters ( �  + � ). 
For the non-stationary models, 
solid (open) shapes indicate that 
the extra covariate (does not) 
significantly improves model fit. 
c The RV20 from non-station-
ary models based on de-trended 
data that use specific humidity 
(Q) and AR intensity as covari-
ates on the location parameter
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We examined the influence of AR variability on extreme 
precipitation by fitting non-stationary generalized extreme 
value distributions to the region mean winter maxima pre-
cipitation. We use either specific humidity or AR intensity as 
covariates on the location parameter, or on both the location 
and scale parameters. More intense AR events and higher 
levels of specific humidity are both associated with around a 
20% increase in the magnitude of extreme events, compared 
to the 1-in-20 year extreme event that is expected when AR 
are weak. The influence of AR intensity on precipitation 
extremes remains after de-trending, while the relationship 
between specific humidity and precipitation decreases, sug-
gesting that the relationship was spuriously strong due to the 
trend in both variables. The trend in specific humidity and 
precipitation stem from the increased water holding capacity 
of the atmosphere that is caused by global warming (Byrne 
and O’Gorman 2018).

ARs are defined from IVT, which is a function of spe-
cific humidity, surface pressure, and winds (both zonal and 
meridional). We show that the variability of extreme pre-
cipitation is more strongly dependent on AR intensity than 

Fig. 8   Probability density func-
tions reconstructed from the 
parameters of the fitted extreme 
value distributions for each 
region (mid-West Coast (mWC) 
= left; south-West Coast (sWC) 
= right) where the location 
parameter ( � ), or both the loca-
tion and scale parameters ( � 
+ � ) are adjusted according to 
low (blue) and high (red) values 
of the covariates, AR intensity 
(solid) and specific humidity 
(dashed)
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Fig. 9   The region mean EC-Earth 2 m temperature (top) and the 
fraction of the region with freezing temperatures (bottom) on atmos-
pheric river days (red) and other rain days (blue) for the sWC (left) 
and mWC (right) in each period. Boxplot shows spread over ensem-
ble members

Table 1   The average 2-m temperature (T2M) and maximum specific 
humidity (Q) over the North Atlantic region in each period from EC-
Earth

Period Mean T2M Maximum Q

Past 12.63 0.0096
Current 13.60 0.0101
Near 14.35 0.0107
Future 16.78 0.0126
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on only specific humidity, particularly once all variables are 
de-trended. These differences may indicate the influence of 
dynamical changes (i.e. a change in the U and V compo-
nents of wind), in addition to the thermodynamic effects. 
These possible dynamic changes are much more uncertain, 
given that we examine only one GCM. EC-Earth is one of 
the best performing models in the historical period in terms 
of cyclone track position and tilt (Zappa et al. 2013), but 
of course this does not guarantee good future performance. 
Future research should focus on untangling the influence 
of dynamic changes on Norwegian ARs. Multi-model, con-
tinuous high-resolution ensemble simulations, such as those 
being produced in HighResMIP (Haarsma et al. 2016), will 
provide an opportunity to explore these differences further, 
but are not all as high-resolution as the version of EC-Earth 
we have used in this study.

The reconstructed distributions of precipitation condi-
tional on AR intensity shows that the distribution of pre-
cipitation shifts to more extreme values when AR or specific 
humidity intensity is high. There are substantial differences 
between the distributions of precipitation in the south-West 
Coast that are conditional on AR intensity and specific 
humidity, with a more pronounced shift to wetter extremes 
when AR intensity is high.

The increase in AR events in the Far-Future in late sum-
mer and autumn (July–September) is striking. This increase 
may be related to the projected increase of extra-tropical 
transitions of hurricanes towards Europe (Haarsma et al. 
2013). It is also possible that there is an increase in late 
summer as the start of the winter storm season combines 
with warm sea–surface temperatures, which could result in 
a large increase in water transport. Future research is neces-
sary to further explore these mechanisms.

Additionally, we demonstrate future changes in the parti-
tioning of AR precipitation between rain and snow, with more 
of the extreme precipitation falling as rain in the future period. 
This results is not surprising given the well-known projected 
warming (Collins et al. 2013), but it will have consequences 
for flood and water management in the future. In the current 
climate, AR events are known to bring a large fraction of win-
ter precipitation in only a few days per year, which is then cap-
tured as snow (Guan et al. 2010). The increased partitioning of 
precipitation as rain rather than snow will mean that flooding 
in winter and autumn is more likely, while decreased snow 
melt in spring can results in reduced flooding. This would 
result in less snow captured during winter available for power 
generation during the remainder of the year.

In summary, our results show that by the end of the cen-
tury, Norway will likely experience more frequent and more 
intense AR events. We show that extreme precipitation events 
are larger in magnitude when the AR event is more intense, 
which will happen more often in the future. Further, most of 
this extreme precipitation will likely fall as rain rather than 

snow. These results have severe implications for water resource 
management in Norway.

One limitation of this study is that we examine changes only 
in one GCM (EC-Earth) and one representative concentration 
pathway (RCP 4.5). We are limited in the number of available 
models and emissions scenarios, as we needed a high-reso-
lution GCM to properly simulate both extreme precipitation 
and AR events. As more high-resolution global simulations 
become available (i.e. as part of the PRIMAVERA project), 
it would be valuable if future work could extend these results 
using more models and under other RCPs. However, previ-
ous work has shown that most of the changes in ARs stem 
from thermodynamic changes, with a small contribution from 
dynamic changes (Gao et al. 2015). As EC-Earth performs 
well in the historical period (Zappa et al. 2013), it is likely 
that the direction and magnitude of the changes presented here 
are consistent in other models. The dynamic contribution is 
more likely to vary between models, and so it would be use-
ful if a more comprehensive study could be conducted in the 
future. A stronger warming signal under a more aggressive 
emissions scenario, i.e. RCP 8.5, would possibly result in a 
larger increase in ARs, more extreme precipitation, and more 
precipitation falling as rain rather than snow.
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