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A B S T R A C T   

This study evaluates global climate models participating in the Coupled Model Intercomparison Project phase 6 
(CMIP6) for their performance in simulating the climate extreme indices defined by the Expert Team on Climate 
Change Detection and Indices (ETCCDI). We compare global climatology patterns of the indices simulated by the 
CMIP6 models with those from HadEX3 and four reanalysis datasets and the CMIP5 multi-model ensemble using 
root-mean-square errors for the 1981–2000 period. Regional evaluations are conducted for 41 sub-regions, 
defined for the Intergovernmental Panel on Climate Change Sixth Assessment Report. In particular, regional 
mean biases are analyzed for the 20-year return values (20RV) of the warmest day and coldest night tempera
tures (TXx and TNn) and annual maximum of daily precipitation (RX1day) using a Generalized Extreme Value 
(GEV) analysis. Results show that the CMIP6 models generally capture the observed global and regional patterns 
of temperature extremes with limited improvements compared to the CMIP5 models. Systematic biases like a 
cold bias in cold extremes over high-latitude regions remain even in stronger amplitudes. The CMIP6 model skills 
for the precipitation intensity and frequency indices are also largely comparable to those of CMIP5 models, but 
precipitation intensity simulations are found to be improved with reduced dry biases. The GEV analysis results 
indicate that the regional biases in 20RV of temperature extremes are dominated by GEV location parameter 
(related to mean intensity) with relatively small contribution from GEV scale/shape parameters (related to 
interannual variability). CMIP6-simulated 20RV of RX1day is characterized by dry biases over the tropics and 
subtropical rain band areas, as in the CMIP5 models, for which biases in both GEV location and scale/shape 
parameters are important.   

1. Introduction 

Extreme weather and climate events exert huge impacts on human 
society and ecosystems. It is imperative to understand the causes of their 
observed changes and to produce creditable future projections for 
climate change adaptation planning. For temperature extremes, the 
observed changes are significant such as the overall increases in hot 
extremes and decreases in cold extremes, and there is ample evidence for 
anthropogenic influences (Seneviratne et al., 2012; Bindoff et al., 2013; 
Min et al., 2013; Kim et al., 2016; Lu et al., 2018; Yin and Sun, 2018; 
Ting et al., 2020). Recent studies also found significant anthropogenic 
contributions to the observed large-scale intensification of precipitation 
extremes (Min et al., 2011; Zhang et al., 2013; Donat et al., 2019; Paik 
et al., 2020). Climate models participating in the Coupled Model Inter
comparison Project phase 5 (CMIP5) project a continuous warming of 
extreme temperatures globally, with increased hot extremes and 

decreased cold extremes in terms of frequency and severity (Collins 
et al., 2013). The Intergovernmental Panel on Climate Change (IPCC) 
Special Report on the impacts of global warming of 1.5 �C (SR15) 
concluded with high confidence that temperature extremes are expected 
to increase up to 3–4.5 �C (relative to a preindustrial condition) over 
northern mid-to-high latitudes in a 1.5 �C warmer world (Hoegh-Guld
berg et al., 2018). 

Global climate models (GCMs) have been used as a primary tool for 
examining the past and future changes in climate extremes, and the 
comprehensive evaluation of GCM performances is important for proper 
interpretation of the simulated results. Recently, a new generation of 
GCMs have been developed for the CMIP6 experiments (Eyring et al., 
2016). CMIP6 models have an increased range of complexity from GCMs 
to Earth System Models with improvements in physical processes and 
higher spatial resolution. One of the scientific focuses of the CMIP6 
experiment is to assess changes in climate extremes for the past and 
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future periods and to understand associated physical processes (Eyring 
et al., 2016; Marotzke et al., 2017). 

There have been two approaches applied to defining and analyzing 
climate extremes (Seneviratne et al., 2012). One approach is to use the 
climate extremes indices defined by the Expert Team on Climate Change 
Detection and Indices (ETCCDI) (Klein Tank et al., 2009; Zhang et al., 
2011). The ETCCDI indices represent relatively frequent extreme 
meteorological events in a given year or month, so it is relatively easy to 
understand their changes (Kharin et al., 2013). The other approach is to 
analyze changes in more extreme climate statistics based on the extreme 
value theory. They usually conduct a Generalized Extreme Value (GEV) 
distribution analysis to fit annual maxima of daily temperature and 
precipitation and then examine changes in rare events such as 20-year 
return values, which provide more relevant information for long-term 
planning (e.g., Kharin et al., 2007, 2013). 

Previous studies evaluated CMIP5 models’ performance for climate 
extremes using either approach (Sillmann et al., 2013; Kharin et al., 
2013). Examining the overall performance of CMIP5 models using the 
ETCCDI indices based on global mean root mean square error (RMSE) 
measures, Sillmann et al. (2013) found a reduced inter-model spread in 
the CMIP5 ensemble in extreme temperature indices and improved 
simulations of precipitation intensity compared to the CMIP3 ensemble. 
Kharin et al. (2013) evaluated the 20-year return values of the annual 
maxima of temperature and precipitation in an ensemble of CMIP5 
models. They found systematic model bias including the cold biases over 
high latitude regions in the Northern Hemisphere and the dry biases 
over the tropical and subtropical regions with large uncertainties. 

The aim of this study is to evaluate the performances of the CMIP6 
multi-model ensemble for temperature and precipitation extremes using 
the two approaches. We first evaluate the overall performance of CMIP6 
models in terms of the 27 ETCCDI climate extreme indices in comparison 
to those of CMIP5 models, conducting an updated analysis of Sillmann 
et al. (2013). In addition, CMIP6 models are evaluated for 20-year return 
values of the annual maxima daily temperatures and precipitation. Here 
we consider the 41 sub-regions, newly defined for the IPCC Sixth 
Assessment Report (AR6). Regional mean biases in 20-year return values 
for CMIP6 models are compared with those for CMIP5 models. 
Following previous studies (Min et al., 2009; Park and Min, 2019), we 
further investigate the relative contribution of GEV location and sca
le/shape parameters (related to mean intensity and interannual vari
ability, respectively) to the total biases in 20-year return values. 

2. Data and methods 

2.1. Data 

We used two reference datasets: HadEX3 observations and four 
reanalysis datasets. The HadEX3 dataset provides gridded extreme 
indices for which extreme indices are first calculated at each stations and 
then interpolated onto a global grid with 1.875� longitude � 1.25�
latitude spatial resolution (Dunn et al., 2020). HadEX3 do not fully cover 
the global land due to station-data availability. To include the global 
land for model evaluation and also to make comparison with previous 
studies (Sillmann et al., 2013, hereinafter referred to as S13), we use 
four reanalysis datasets: ERA40 (Uppala et al., 2005), NCEP/NCAR 
Reanalysis 1 (NCEP1; Kalnay et al., 1996), NCEP-DOE Reanalysis 2 
(NCEP 2; Kalnay et al., 2002), and ERA-5 (Hersbach and Dee, 2016). The 
available periods of ERA40 and NCEP1 are 1958–2001 and 1948–2018, 
respectively. NCEP2 and ERA-5 provide data from 1979 to 2018. These 
reanalyses are the same as those used in S13 except ERA-5 which is used 
instead of ERA-Interim (Dee et al., 2011). The newly released ERA-5 has 
higher spatial (30 km) and time resolution (hourly) than the other three 
reanalysis datasets, potentially making it more suitable to estimate and 
evaluate the climate extremes. This study used ERA-5 reanalysis (1� � 1�
resolution version) as a main reference dataset to evaluate CMIP6 
models in comparison with CMIP5 models. Pointing out large 

discrepancies among four reanalysis datasets for climate extreme indies, 
S13 suggested a thoughtful choice of reference datasets. In this regard, 
the inter-reanalysis spread in model skills was evaluated. ERA-5-based 
results were also compared with HadEX3-based results on global scale 
with applying same data availability to gain an insight into the influence 
of observational uncertainty. 

We used daily minimum and maximum temperature (TN and TX) 
and daily precipitation amount (PR) from 32 CMIP6 models (Table S1, 
Eyring et al., 2016) and 35 CMIP5 models (Table S2, Taylor et al., 2012). 
The historical simulations from both model groups were used for model 
evaluation, which were performed under anthropogenic (greenhouse 
gases and anthropogenic aerosols) plus natural (solar and volcanic ac
tivities) forcings. Although some CMIP6 models have large ensemble 
members, up to 31 members, we use a single member for each model for 
fair comparisons, typically the first member (r1i1p1f1 for CMIP6 and 
r1i1p1 for CMIP5). 

2.2. Climate extreme indices definition and calculation 

Table 1 shows the 16 temperature and 11 precipitation extreme 
indices defined by the ETCCDI (Zhang et al., 2011). The capital “X" and 
“N” means the daily maximum and minimum temperature, respectively. 
The small letter “x" and “n” means the annual or monthly maximum and 
minimum value, respectively. The indices can be divided into four 
groups: (1) absolute indices like the hottest day and coldest night per 
year (TXx and TNn) or the annual daily and five day maximum PR 
(RX1day and RX5day); (2) threshold indices, which count the number of 
days exceeding a fixed threshold such as frost days (FD) and summer 
days (SU), (3) percentile-based threshold indices, which indicate the 
exceedance rates below 10th percentile (10p) or above 90th percentile 
(90p) derived from the 1961–1990 base period like TN10p, TX10p, 
TN90p, and TX90p; (4) duration indices, which represent the length of 
warm and cold spells (WSDI and CSDI, based on percentile thresholds) 
or dry and wet spell (CDD and CWD, based on absolute threshold). When 
calculating the percentile-based threshold indices, the same base period 
of 1961–1990 was applied to all climate models and two reanalyses 
(NCEP1 and ERA-40). However, different base periods were used for 
NCEP2 (1979–2008) and ERA-5 (1981–2010) due to the different 
starting years, which may induce some differences in those indices 
among reanalyses, thereby affecting model skills. For more details, see 
Klein Tank et al. (2009) and Zhang et al. (2011). 

The 27 climate extreme indices were calculated using the R package 
‘climdex.pcic’. The R package and its documentation is available on the 
website (http://cran.r-project.org/web/packages/climdex.pcic/index. 
html). All indices of GCMs and three reanalyses (ERA-40, NCEP1 and 
NCEP2) were computed on original model/reanalysis grids and then 
interpolated into a common 1� � 1� grid using a bilinear remapping 
before taking area-average for global land and 41 sub-regions. For ERA- 
5, we first interpolated daily temperature and precipitation data at 30 
km resolution into 1� � 1� grid and then calculated climate extreme 
indices in order to reduce the difference in spatial scales from CMIP6 
models (1–2�). We conducted the regional analysis for 41 sub-regions 
(Fig. 1) following the domains of Iturbide et al. (2020) prepared for 
the IPCC AR6. HadEX3 indices were used in its original resolution. 

2.3. Model performance metric 

Following S13, this study employed metrics based on the RMSEs of 
the model climatology pattern for the period of 1981–2000. The equa
tion for RMSE is as follows: 

RMSEXY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〈ðX � YÞ2〉
q

(1)  

where X and Y are denoted as the model and reanalysis climatology of an 
index, respectively. The angular brackets represent the spatial mean 
over global land. The relative model RMSE (RMSE’XY) for each model is 
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derived as 

RMSE0XY ¼
RMSEXY � RMSEmedian

RMSEmedian
(2)  

where RMSEmedian represents the median of the RMSE for all models. 
The median of the RMSE is standardized by the spatial standard devia
tion (SD) of climatology in the reanalysis for each index as follows: 

RMSEmedian;std ¼RMSEmedian

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〈ðY � 〈Y〉Þ2〉
q

(3) 

Table 1 
27 extreme indices by the ETCCDI.  

Label Index Name Index Definition Units 

TN10p Cold nights Let TNij be the daily minimum 
temperature on day i in period j and let 
TNin10 be the calendar day 10th 
percentile centred on a 5-day window 
for the base period 1961–1990. The 
percentage of time for the base period 
is determined where: TNij < TNin10 

% 

TX10p Cold days Let TXij be the daily maximum 
temperature on day i in period j and let 
TXin10 be the calendar day 10th 
percentile centred on a 5-day window 
for the base period 1961–1990. The 
percentage of time for the base period 
is determined where: TXij < TXin10 

% 

TN90p Warm nights Let TNij be the daily minimum 
temperature on day i in period j and let 
TNin90 be the calendar day 90th 
percentile centred on a 5-day window 
for the base period 1961–1990. The 
percentage of time for the base period 
is determined where: TNij > TNin90 

% 

TX90p Warm days Let TXij be the daily maximum 
temperature on day i in period j and let 
TXin90 be the calendar day 90th 
percentile centred on a 5-day window 
for the base period 1961–1990. The 
percentage of time for the base period 
is determined where: TXij > TXin90 

% 

WSDI Warm spell 
duration 

Let TXij be the daily maximum 
temperature on day i in period j and let 
TXin90 be the calendar day 90th 
percentile centred on a 5- day window 
for the base period 1961–1990. Then 
the number of days per period is 
summed where, in intervals of at least 6 
consecutive days: TXij > TXin90 

days 

CSDI Cold spell duration Let TNij be the daily minimum 
temperature on day i in period j and let 
TNin10 be the calendar day 10th 
percentile centred on a 5- day window 
for the base period 1961–1990. Then 
the number of days per period is 
summed where, in intervals of at least 6 
consecutive days: TNij < TNin10 

days 

TXx Max TX Let TXkj be the daily maximum 
temperatures in month k, period j. The 
maximum daily maximum temperature 
each month is then: TXxkj ¼ max(TXkj) 

�C 

TXn Min TX Let TXkj be the daily maximum 
temperatures in month k, period j. The 
minimum daily maximum temperature 
each month is then: TXnkj ¼ min(TXkj) 

�C 

TNx Max TN Let TNkj be the daily minimum 
temperatures in month k, period j. The 
maximum daily minimum temperature 
each month is then: TNxkj ¼ max(TNkj) 

�C 

TNn Min TN Let TNkj be the daily minimum 
temperatures in month k, period j. The 
minimum daily minimum temperature 
each month is then: TNnkj ¼ min(TNkj) 

�C 

FD Frost days Let TNij be the daily minimum 
temperature on day i in period j. Count 
the number of days where TNij <0 �C 

days 

ID Ice days Let TXij be the daily maximum 
temperature on day i in period j. Count 
the number of days where TXij <0 �C 

days 

SU Summer days Let TXij be the daily maximum 
temperature on day i in period j. Count 
the number of days where TXij > 25 �C 

days 

TR Tropical nights Let TNij be the daily minimum 
temperature on day i in period j. Count 
the number of days where TNij > 20 �C 

days 

GSL Growing season 
length 

Let Tij be the mean temperature ((TN þ
TX)/2) on day i in period j. Count the 

days  

Table 1 (continued ) 

Label Index Name Index Definition Units 

number of days between the first 
occurrence of at least 6 consecutive 
days with T > 5 �C and the first 
occurrence after 1st July (NH) or 1st 
January (SH) of at least 6 consecutive 
days with Tij < 5 �C 

DTR Diurnal 
temperature range 

Let TNij and TXij be the daily minimum 
and maximum temperature 
respectively on day i in period j. If I 
represents the number of days in j, 
then: DTRj ¼

PI
n¼1ðTXij � TNijÞ=I  

�C 

RX1day Max 1 day 
precipitation 

Let PRij be the daily precipitation 
amount on day i in period j. The 
maximum 1 day value for period j are: 
RX1dayj ¼ max (PRij) 

mm 

RX5day Max 5 day 
precipitation 

Let PRkj be the precipitation amount for 
the 5 day interval ending k, period j. 
Then maximum 5 day values for period 
j are: RX5dayj ¼ max (PRkj) 

mm 

SDII Simple daily 
intensity 

Let PRwj be the daily precipitation 
amount on wet days, PR � 1 mm in 
period j. If W represents number of wet 
days in j, then: SDIIj ¼ ð

PW
w¼1PRwjÞ=W  

mm 

R1mm Number of wet 
days 

Let PRij be the daily precipitation 
amount on day i in period j. Count the 
number of days where PRij > 1 mm 

days 

R10mm Heavy 
precipitation days 

Let PRij be the daily precipitation 
amount on day i in period j. Count the 
number of days where PRij > 10 mm 

days 

R20mm Very heavy 
precipitation days 

Let PRij be the daily precipitation 
amount on day i in period j. Count the 
number of days where PRij > 20 mm 

days 

CDD Consecutive dry 
days 

Let PRij be the daily precipitation 
amount on day i in period j. Count the 
largest number of consecutive days 
where PRij < 1 mm 

days 

CWD Consecutive wet 
days 

Let PRij be the daily precipitation 
amount on day i in period j. 
Count the largest number of 
consecutive days where PRij > 1 mm 

days 

R95p Very wet days Let PRwj be the daily precipitation 
amount on a wet day w (PR � 1 mm) in 
period i and let PRwn95 be the 95th 
percentile of precipitation on wet days 
in the 1961–1990 period. If W 
represents the number of wet days in 
the period, then: R95pj ¼

PW
w¼1PRwj, 

where PRwj > PRwn95  

mm 

R99p Extremely wet 
days 

Let PRwj be the daily precipitation 
amount on a wet day w (PR � 1 mm) in 
period i and let PRwn99 be the 99th 
percentile of precipitation on wet days 
in the 1961–1990 period. If W 
represents the number of wet days in 
the period, then: R99pj ¼

PW
w¼1PRwj, 

where PRwj > PRwn99  

mm 

PRCPTOT Total wet-day 
precipitation 

Let PRij be the daily precipitation 
amount on day i in period j. If I 
represents the number of days in j, 
then: PRCPTOTj ¼

PI
n¼1PRij  

mm  
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This provides a measure of absolute magnitude of errors for the 
multimodel ensemble with respect to the given reanalysis. Note that for 
percentile-based threshold indices for extreme temperatures (TN10p, 
TX10p, TN90p, and TX90p), the median RMSE is divided by the ex
pected exceedance rate 10% rather than the SD of reanalysis clima
tology, considering the design of the indices. We repeated RMSE 
calculations using four reanalyses and compared results by displaying 
them in the ‘portrait’ plot. For more details, refer to S13. 

2.4. GEV analysis 

Following previous studies (Kharin et al., 2007, 2013), we analyzed 
the return values of annual extremes for temperature (TXx and TNn) and 
precipitation (RX1day). Return values were calculated as the quantile 
functions of GEV distribution. To derive the return values, annual 
maxima of temperature and precipitation at every grid point during 
1981–2000 were first fitted to the GEV distribution. The cumulative 
density function (CDF) of the GEV distribution for variable x is: 

Fðx; μ; σ; ξÞ ¼

8
>><

>>:

exp
h
� exp

n
�

x � μ
σ

oi
; ξ ¼ 0

exp
�

�
n

1þ ξ
x � μ

σ

o� ξ� 1 �

; ξ 6¼ 0; 1þ ξ
x � μ

σ > 0
(4)  

where μ, σ, and ξ represent the location, scale, and shape parameters, 
respectively. GEV parameters are estimated using the L-moments 
method (Hosking, 1990), which is suggested when the sample size is 
small (Kharin et al., 2007, 2013). 

A return value is calculated as the exceedance of the annual extreme 
with probability p. For the CMIP5 and CMIP6 multi-model ensembles, 
the 20-year return values (20RV) of TXx, TNn and RX1day are calculated 
for the historical time period 1981–2000. The quantile function of GEV 
is derived by inverting a CDF for a given probability p as: 

Xp ¼

8
<

:

μ � σ ln½ � lnðpÞ �; ξ ¼ 0

μ � σ
ξ

ln½1 � ð � lnðpÞ Þ� ξ
�; ξ 6¼ 0:

(5) 

The corresponding 20RV is obtained when p ¼ 0.95 (or an annual 
extreme exceedance probability ¼ 5%). 

The quantile function of GEV (return values) includes two terms. The 

first term is the GEV location parameter itself and the second term de
scribes the contribution of GEV scale and shape parameters (Min et al., 
2009; Park and Min, 2019). By comparing the two terms of Eq. (5), we 
could evaluate which GEV parameters play a dominant role in the bias of 
20RV. This information is useful to understand the origins of 20RV bias, 
i.e. whether the total biases are related to mean intensity bias, inter
annunal variability bias, or both. 

3. Results 

3.1. Temperature indices 

For absolute and threshold indices, the spatial climatology patterns 
are compared between HadEX3, ERA-5, the CMIP6 multimodel 
ensemble median (MEM) and the CMIP5 MEM. Fig. 2 shows the spatial 
distribution of the 1981–2000 climatology for TXx and TNn. The 
climatology patterns of the other reanalyses (ERA-40, ERA-Interim, 
NCEP1, and NCEP2) can be seen from SI Figs. 1 and 2 of S13. Overall, 
the CMIP6 models can reproduce the HadEX3 and reanalysis clima
tology pattern for TXx and TNn well (Fig. 2). ERA-5 shows a similar 
pattern to those of ERA-40 and ERA-Interim. Compared to ERA-5, 
CMIP6 models on average simulate lower TXx over northern high lati
tudes and higher TXx over eastern USA, west Asia, and South America. 
These systematic errors are consistent with those of the CMIP5 MEM, but 
the warm biases of CMIP6 are generally weaker than those of CMIP5, 
particularly over South America. TNn is colder in CMIP6 models across 
the global land except for northeastern Eurasia and southern mid- 
latitudes. Overall bias pattern of TNn is similar to that of the CMIP5 
but CMIP6 models tend to simulate lower TNn than CMIP5. These fea
tures of spatial patterns for absolute indices are also present in threshold 
indices such as FD and SU (SI Fig. 1). CMIP6 models simulate more FD 
and less SU than those from ERA-5 over northern high latitudes and the 
Tibetan Plateau due to the cold biases in TN and TX. These features were 
also observed in CMIP3 (Randall et al., 2007) and CMIP5 (SI Fig. 1, S13). 

To evaluate regional performance of CMIP6 models, TXx and TNn 
climatology and biases for 41 sub-regions (cf. Fig. 1) are compared in 
Fig. 3. Climate extreme indices estimated from ERA-40 and NCEP1 are 
also shown for comparison with ERA-5, which exhibited the largest 
differences (S13). TXx and TNn estimated from ERA-40 are similar to 
those of ERA-5 while NCEP1 shows higher TXx and lower TNn than ERA- 

Fig. 1. 41 sub-regional domains over global land adopted from Iturbide et al. (2020). Shaded colors indicate different continents: North America (purple series), 
South America (green), Europe (brown), Africa (red), Asia (blue), and Oceania (pink series). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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5. CMIP6 models can generally reproduce the ERA-5 regional mean TXx 
reasonably well. For some South American and mid-latitude Asian re
gions, CMIP6 models simulate higher TXx than ERA-5 while they 
simulate lower TXx over northern high latitude regions such as N.E. 
Canada (NEC), N.W. North-America (NWN), Russian-Arctic (RAR) and 
Russian-Far-East (RFE). CMIP6 models underestimate the TNn 
compared to ERA-5 in northern mid- and high latitude regions such as 
Greenland/Iceland (GIC), NEC, NWN, W. North-America (WNA), N. 
Europe (NEU), W.C. Asia (WCA), and Tibetan Plateau (TIB). The MEMs 
of CMIP6 are comparable with those of CMIP5 for most regions (Fig. 3a 
and b). Cold biases of TNn are slightly stronger in CMIP6 models than 
CMIP5 models. Due to the difference in the models between CMIP5 (35 
models) and CMIP6 (32 models), it is difficult to directly compare the 
inter-model spread between them. To address this, we compare the 
spread of models for temperature extremes using the models from the 
same institutions participating in both CMIP5 (27 models) and CMIP6 
(26 models) (SI Fig. 2). The inter-model spread of TXx (as measured by 
the interquartile range of the multimodel ensemble) of CMIP6 is found 
to be narrower than that of CMIP5 over many regions while the CMIP6 
spread for TNn remains similar to that of CMIP5. 

The regional evaluation results for the threshold indices (FD and SU) 
are similar to those for the absolute indices (SI Fig. 3). CMIP6 models 

simulate slightly larger FD than CMIP5 over northern high latitudes, 
consistent with the colder TNn. The median of SU calculated from 
CMIP6 simulations is similar to that of CMIP5. The model spread for FD 
and SU also resembles that of the absolute indices. The CMIP6 spread for 
SU is narrower than that of CMIP5 while FD spread is similar between 
CMIP6 and CMIP5 models when using same institution models (not 
shown). 

3.2. Precipitation indices 

Fig. 4 shows climatology patterns for very wet days (R95p), annual 
maximum 5 day precipitation (RX5day) and consecutive dry days (CDD) 
for HadEX3, ERA-5, the CMIP6 MEM, and the CMIP5 MEM. The CMIP6 
climatology for RX5day and R95p compares well with HadEX3 and ERA- 
5 including the east-west pattern over North America and high rainfall 
over the Asian and South American tropical regions. There are wet 
biases over southern Africa, central South America, and northern 
Australia. Compared to extreme precipitation events (R95p and 
RX5day), CDD in HadEX3 has a broader data coverage because the dry 
climate has a larger spatial and temporal scale than extreme events 
(S13). CMIP6 models reproduce the CDD climatology pattern well with a 
large number of dry days in the Sahara. However, they overestimate 

Fig. 2. Spatial distribution of climatology (1981–2000 mean) for TXx (upper panel) and TNn (lower panel) from HadEX3, ERA-5, CMIP6 multimodel ensemble 
median (MEM), CMIP5 MEM, and difference between CMIP6/CMIP5 MEM and ERA-5. 
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CDD over South America and underestimate CDD over Sahara region. 
The CMIP6 climatology patterns of precipitation extreme indices are 
overall similar to those of CMIP5. A noticeable difference is a reduced 
dry bias over central South America, South Asia and East Asia in CMIP6. 

For regional analysis, box-and-whisker plots are presented in Fig. 5 
for regional means and their biases of total wet-day precipitation 
(PRCPTOT), Simple Daily Intensity (SDII), and heavy precipitation days 
(R10mm). Three reanlayses show different estimates for precipitation 
extreme indices, particularly over wet sub-regions such as N.W. South- 

America (NWS) and S.E. Asia (SEA). The PRCPTOT and R10mm calcu
lated from CMIP6 are similar to the reanalysis results, but there is an 
underestimation compared to ERA-5 over South America. The CMIP6 
MEM of the PRCPTOT, SDII and R10mm are larger than CMIP5 across 
many regions. The more intense precipitation simulated by CMIP6 
models are also seen in annual precipitation extremes, such as very wet 
days (R95p) and RX5day in most regions (SI Fig. 4), representing that 
CMIP6 models simulate more strong precipitation than CMIP5 models. 

CDD estimated by CMIP6 is larger than that of CMIP5 over some 
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Fig. 3. Box-and-whisker plots for (a) TXx and (b) TNn calculated from 35 CMIP5 (gray) and 32 CMIP6 (black) models with raw indices (upper panel) and its biases 
(bottom panel). Biases are calculated with respect to ERA-5 values. The boxes indicate the interquartile model spread (range between the 25th and 75th percentiles), 
the black/gray solid marks within the boxes show the multimodel median and the whiskers indicate the total intermodel range. The reanalyses are indicated in 
different colors for ERA-5 (read), ERA40 (green) and NCEP1 (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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Fig. 4. Same as Fig. 2 but for (a) R95p, (b) RX5day, and (c) CDD.  
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Fig. 5. Same as Fig. 3 but for (a) PRCPTOT, (b) SDII, and (c) R10mm.  
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African sub-regions (SI Fig. 5). As compared to ERA-5, CMIP6 models 
tend to overestimate the CDD over South American (SAM, NSA, and 
NES) and African (NEAF and CEAF) sub-regions but underestimate it 
over Sahara (SAH), SWAF, and TIB. The consecutive wet days (CWD) is 
simulated similarly between CMIP6 and CMIP5 models with some un
derestimation over SCA, NWS, NSA, SAS, and SEA (SI Fig. 5). 

3.3. Metric analysis of model performance 

Overall performance for individual models for climate extreme 
indices is summarized using a “portrait” diagram (Fig. 6). The portrait 
diagram consists of the relative magnitudes of global land mean RMSE 
for each index by rows and for each model by columns, and the average 
RMSE for all indices (RMSEall) in top raw. In the relative magnitudes of 
the RMSEs, the blue series colors indicate that model performance is 
better than others and the red colors indicate models with relatively low 
skills, on average. Four triangles within each box indicates results from 
four reanalyses: ERA-5 (upper), NCEP1 (right), NCEP2 (bottom), and 
ERA40 (left). We also evaluate the performance of the multimodel mean 
and median of the CMIP6 models, which is displayed in the first two 

columns. To obtain RMSEs for the multimodel mean and median, we 
first obtain the multimodel mean and median of each extreme index and 
then calculate its relative RMSE. The performance of multimodel mean 
and median is largely better than individual models due to substantial 
reduction of the systematic errors in individual models (S13). Based on 
the RMSEall (top raw), NorESM2-MM shows the best performance, with 
negative relative RMSEs for all four reanalyses, followed by ACCESS- 
CM2, CNRM–ESM2-1, GFDL-ESM4, HadGEM3-GC31-LL, MPI-ESM1-2- 
HR, MRI-ESM2-0, and NorESM2-LM which exhibit relatively small er
rors for three reanalyses. 

The right-hand side two columns with gray shading represent the 
median RMSE for CMIP6 and CMIP5 models, standardized by the spatial 
standard deviation (SD) in the reanalyses (RMSEmedian,std). Values close 
to zero (white series colors) mean that absolute errors are lower than 
spatial variations over the global land for a given reanalysis. The 
RMSEmedian,std of precipitation indices is generally larger than temper
ature indices (except duration indices) in both CMIP6 and CMIP5 
models. On the far right-hand, we plot the differences in RMSEmedian,std 
between CMIP6 and CMIP5 models. The performance of the CMIP6 
models for modeling temperature extremes has overall been improved in 
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comparison with the CMIP5. Particularly in the WSDI, TN90p, TN10p, 
TXx, and TNx, CMIP6 models show reduced magnitude of absolute er
rors. Some improvements are also found in precipitation extremes 
indices, such as CDD, PRCPTOT, and R10mm. 

As in S13, model performance varies substantially depending on 
reanalysis dataset used as a reference. When ranking the CMIP6 models 
based on RMSEall, the orders of CMIP6 models are different among four 
reanalysis datasets. For example, NorESM2-MM shows the best perfor
mance when compared to NCEP2 and ERA-5 while MPI-ESM1-2-LR and 
NorESM2-LM have the smallest error against NCEP1 and ERA40, 
respectively. To quantify the associated uncertainty in model perfor
mance due to the different reanalyses, the inter-reanalysis spread 
(standard deviation) of relative RMSEs is calculated for each box of the 
portrait plot (SI Fig. 6). For temperature indices, TNn, FD, TR, GSL, and 
DTR exhibit a relatively large variation of relative RMSEs, indicating 
greater inter-reanalysis differences in nighttime temperature (TN) than 
daytime temperature (TX). For precipitation indices, duration indices 
(CDD and CWD), Rx1day, and percentile-based threshold indices (R99p 
and R95p) show larger differences in relative RMSEs among reanalyses. 
Overall, larger spread is observed for precipitation extreme indices than 
for temperature extreme indices. This seems to be partly due to stronger 
spatial inhomogeneity of precipitation (Donat et al., 2014) as well as no 
assimilation of precipitation observations into the reanalyses (Kalnay 
et al., 1996). 

In order to further explore the possible influence of the observational 
uncertainty, we construct the same portrait plots using HadEX3 obser
vations and compare the results with those based on ERA-5 reanalysis. 
Here, all extreme indices from ERA-5 and CMIP6 and CMIP5 models are 
interpolated onto the HadEX3 grid and masked with the HadEX3 data 
availability prior to analysis. In addition, to examine variable de
pendency of model performances, temperature and precipitation indices 
are illustrated separately with models being ranked based on the cor
responding RMSEall values (SI Figs. 7 and 8). It can be seen that model 
ranks vary considerably between the two datasets, particularly for 
temperature indices. For example, HadGEM3-GC31-MM, MPI-ESM1-2- 
HR, and MRI-ESM2-0 correspond to a higher skill group when compared 
to EAR5, but they belong to a lower skill group from an evaluation 
against HadEX3 (SI Fig. 7). Model ranks for precipitation indices remain 
similar between the two datasets (SI Fig. 8). Another noticeable differ
ence can be seen for the CMIP5-CMIP6 skill comparison. When using 
HadEX3 observations, the RMSEstd values tend to increase and their 
CMIP6-CMIP5 difference also becomes weaker, which are found for both 
temperature (TN10p, TXn, ID, SU, FD, and DTR) and precipitation 
indices (PRCPTOT, R95p, and R99p). Overall, the high sensitivity of 
model performance to the use of different reanalyses and observations 
confirms the importance of reference data selection when evaluating 
climate models in terms of extreme indices (S13). 

3.4. 20-year return level of annual maxima indices 

Fig. 7a displays box-and-whisker plots for 20RV for TXx simulated by 
CMIP5 and CMIP6 models over global land and 41 sub-regions with the 
corresponding estimates from ERA-5, ERA-40, and NCEP1. The 20RV 
values of TXx estimated from ERA-5 and ERA-40 are almost same all 
across regions but those of NCEP1 are located far from the two ECMWF 
reanlayses, which can also be seen in 20-year mean TXx (Fig. 3a). For 
more detailed analysis, we plot the bias of 20RV based on ERA-5 
(Fig. 7b). There are cold biases over northern high latitude regions 
(GIC, NEC, NWN, NEU, RAR, and RFE) and warm biases over South 
America except for SSA and mid-latitude Asia. To identify the relative 
contribution of GEV location parameter (related to mean intensity) and 
scale and shape parameters (related to interannual variability) to the 
biases in 20RV, we plot the bias in the GEV location parameter (first 
term of Eq. (5)) and the bias of 20RV associated with the GEV scale and 
shape parameters (second term of Eq. (5)) in Fig. 7c and d, respectively. 
It can be clearly seen that the biases in GEV location parameter are very 

similar in amplitude to those of 20RV while the bias related to GEV scale 
and shape parameters is much smaller. This indicates that mean in
tensity of TXx (i.e. near center location of GEV distribution) dominates 
the biases in 20RV of TXx with relatively small contribution from 
interannual variability of TXx (i.e. spread of GEV distribution). The 
CMIP6 patterns of 20RV and biases for global land and 41 sub-regions 
are generally similar to those of CMIP5. The CMIP6 models show 
reduced warm biases in 20RV of TXx over South American and Asian 
sub-regions compared to CMIP5 (Fig. 7b), which is well consistent with 
the results for TXx (Fig. 3a). This improved skill of CMIP6 models in 
20RV of TXx is also found to be mainly related to the improved simu
lations of GEV location parameter (Fig. 7c). 

The 20RV of TNn and their biases over global land and 41 sub- 
regions are displayed in Fig. 8. Compared to ERA-5, ERA-40 over
estimates TNn and NCEP1 largely underestimates TNn (Fig. 8a), which is 
also seen in FD (SI Fig. 3). In CMIP6 models, the biases in 20RV of TNn 
are generally larger than those of TXx. CMIP6 models underestimate 
20RV of TNn, as compared to ERA-5, especially over northern high- 
latitude areas such as GIC, NEC, and NWN and mid-latitude Asian 
areas like WCA, TIB, EAS, and SAS, with stronger amplitudes than 
CMIP5 results (Fig. 8b). The biases in GEV location parameter are very 
similar to those of 20RV while the biases related to GEV scale and shape 
parameters are overall very small (Fig. 8c and d). This indicates that for 
TNn, the mean intensity bias (near center location of GEV distribution) 
is the main contributor to the bias in 20RV as in the case of TXx. 

Fig. 9 shows distributions of 20RV of RX1day and their biases for 
global land and 41 sub-regions. NCEP1 exhibits much lower values over 
all regions than ERA-5 and ERA-40, which are also seen in RX5day, 
R20mm, and R95p (SI Fig. 4), representing systematic dry biases. CMIP6 
model skills for the extreme precipitation intensity are largely compa
rable to those of CMIP5 models over all across regions, reproducing 
ERA-5 values over many wet regions (Fig. 9a). However, dry biases 
remain over the tropics and the subtropical American (SCA, CAR, NWS, 
NSA, and NES) and Asian (EAS, SAS, and SEA) regions (Fig. 9b). These 
are consistent with CMIP5 results but biases are reduced over many 
regions. GEV analysis results show that both mean intensity (GEV 
location parameter) and interannual variability (GEV scale and shape 
parameters) contribute to the biases of 20RV of RX1day (Fig. 9c and d). 
In particular, stronger contribution of internanual variability than mean 
intensity is observed over the tropical and subtropical regions of the 
America and Asia (Fig. 9d). Improved simulation of extreme precipita
tion by CMIP6 models are also found to be related more to the improved 
simulation of the spread of GEV distribution (Fig. 9b and d). This sug
gests possible improvements of CMIP6 models in terms of simulating the 
interannual variability of summer monsoon (cf. Xin et al., 2020), details 
of which warrants further investigations. 

4. Conclusions 

This paper documents the performances of the GCMs participating in 
CMIP6 in terms of climate extremes. Historical simulations for 
1981–2000 are analyzed and CMIP6 model skills are compared with 
those of CMIP5 models. The model-simulated values for the climate 
extreme indices defined by the ETCCDI are compared to HadEX3 ob
servations and four reanalyses for the global and regional patterns of 
climatology. 20-year return values (20RV) of the warmest day and 
coldest night temperatures and the annual maximum daily precipitation 
are also evaluated for the 41 sub-regions using a GEV analysis. 

We find that the CMIP6 models capture the observed climatology 
pattern of extreme temperature indices well, overall similar to CMIP5 
models. For warm extreme indices, CMIP6 models tend to simulate 
reduced warm biases over the South America and mid-latitude Asia. For 
cold extreme indices, the cold biases over high latitude regions remain in 
the CMIP6 models with stronger amplitudes than those in the CMIP5 
models. For the extreme precipitation indices, the overall performance 
of the CMIP6 models is comparable to that of the CMIP5 models, but the 
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Fig. 7. Box-and-whisker plots for (a) 20-year return values of TXx (�C) from 35 CMIP5 (gray), 32 CMIP6 (black) models, and three reanalyses, (b) biases in 20RV of 
TXx, (c) biases of GEV location parameters of TXx, and (d) (b)–(c) representing the biases in 20RV associated with GEV scale and shape parameters. Biases are 
calculated with respect to ERA-5. 
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Fig. 8. Same as Fig. 7 but for TNn (�C).  
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Fig. 9. Same as Fig. 7 but for RX1day (mm/day).  
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CMIP6 models are found to simulate extreme precipitation more 
strongly, with reduced dry biases over the tropical and subtropical rain 
band regions. Overall, there still exist large inter-model spreads. 

Biases in 20RV of annual extreme temperature and precipitation are 
generally consistent with the biases in 20-year means, including the cold 
biases over high northern latitude and the dry biases in tropical and sub- 
tropical regions. GEV analysis results show that the biases in 20RV of 
temperature extremes are largely associated with biases in GEV location 
parameter (related to mean intensity). In contrast, the biases in 20RV of 
precipitation extreme are affected by both GEV location and GEV scale/ 
shape parameters (related to interannual variability). 

Overall, the skill of CMIP6 models is similar to those of CMIP5 
models, indicating limited improvements in model skills for climate 
extremes. One notable exception is the improved reproduction of 
extreme precipitation intensity by CMIP6 models. Further investigation 
is needed to identify what modeling factors have contributed to the 
stronger extreme precipitation, including the influences of higher spatial 
resolution and the improved model physics (cf. Eyring et al., 2019; Paik 
et al., 2020). In addition, the sources of improved simulations of the 
interanual variability are needed to be examined, particularly for pre
cipitation extremes over wet regions. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

CRediT authorship contribution statement 

Yeon-Hee Kim: Data curation, Formal analysis, Writing - original 
draft. Seung-Ki Min: Conceptualization, Methodology, Writing - orig
inal draft. Xuebin Zhang: Writing - review & editing, Supervision. Jana 
Sillmann: Methodology, Writing - review & editing. Marit Sandstad: 
Validation, Writing - review & editing. 

Acknowledgements 

This study was supported by the Korea Meteorological Administra
tion Research and Development Program under Grant KMI2018-01214 
and by the National Research Foundation of Korea (NRF) grant funded 
by the Korea government (MSIT) (NRF-2018R1A5A1024958). We 
acknowledge the World Climate Research Programme, which, through 
its Working Group on Coupled Modelling, coordinated and promoted 
CMIP6. We thank the climate modeling groups for producing and 
making available their model output, the Earth System Grid Federation 
(ESGF) for archiving the data and providing access, and the multiple 
funding agencies who support CMIP6 and ESGF. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.wace.2020.100269. 

References 

Bindoff, N.L., Stott, P.A., AchutaRao, K.M., Allen, M.R., Gillett, N., Gutzler, D., 
Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Mokhov, I.I., Overland, J., Perlwitz, J., 
Sebbari, R., Zhang, X., 2013. Detection and attribution of climate change: from 
global to regional. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., 
Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: 
the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge University 
Press, Cambridge, United Kingdom and New York, NY, USA.  

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., 
Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. 
J., Wehner, M., 2013. Long-term climate change: projections, commitments and 
irreversibility. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., 
Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: 

the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge University 
Press, Cambridge, United Kingdom and New York, NY, USA.  

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., 
Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de 
Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., 
Haimberger, L., Healy, S.B., Hersbach, H., H�olm, E.V., Isaksen, L., Kållberg, P., 
K€ohler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., 
Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Th�epaut, J.N., Vitart, F., 2011. 
The ERA-Interim reanalysis: configuration and performance of the data assimilation 
system. Q. J. R. Meteorol. Soc. 137, 553–597. https://doi.org/10.1002/qj. 

Donat, M.G., Sillmann, J., Wild, S., Alexander, L.V., Lippmann, T., Zwiers, F.W., 2014. 
Consistency of temperature and precipitation extremes across various global gridded 
in situ and reanalysis data sets. J. Clim. 27, 5019–5035. 

Donat, M.G., Ang�elil, O., Ukkola, A.M., 2019. Intensification of precipitation extremes in 
the world’s humid and water-limited regions. Environ. Res. Lett. 14 (6), 065003 
https://doi.org/10.1088/1748-9326/ab1c8e. 

Dunn, R.J.H., Alexander, L.V., Donat, M.G., Zhang, X., et al., 2020. Development of an 
updated global land in-situ-based dataset of temperature and precipitation extremes: 
HadEX3. J. Geophys. Res. Atmos. Accepted.  

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 
2016. Overview of the coupled model Intercomparison project phase 6 (CMIP6) 
experimental design and organization. Geosci. Model Dev. (GMD) 9, 1937–1958. 
https://doi.org/10.5194/gmd-9-1937-2016. 

Eyring, V., Cox, P.M., Flato, G.M., Gleckler, P.J., Abramowitz, G., Caldwell, P., 
Collins, W.D., Gier, B.K., Hall, A.D., Hoffman, F.M., Hurtt, G.C., Jahn, A., Jones, C.D., 
Klein, S.A., Krasting, J.P., Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G.A., 
Pendergrass, A.G., Pincus, R., Ruane, A.C., Russell, J.L., Sanderson, B.M., Santer, B. 
D., Sherwood, S.C., Simpson, I.R., Stouffer, R.J., Williamson, M.S., 2019. Taking 
climate model evaluation to the next level. Nat. Clim. Change 9, 102–110. https:// 
doi.org/10.1038/s41558-018-0355-y. 

Hersbach, H., Dee, D., 2016. ERA5 reanalysis is in production, ECMWF Newsletter 147. 
ECMWF, available at: https://www.ecmwf.int/en/newsletter/147/news/era5-re 
analysis-production. last access: 24 March 2017.  

Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., 
Diedhiou, A., Djalante, R., Ebi, K.L., Engelbrecht, F., Guiot, Hijioka, J., Mehrotra, Y. 
S., Payne, A., Seneviratne, S.I., Thomas, A., Warren, R., Zhou, G., 2018. Impacts of 
1.5�C global warming on natural and human systems. In: Masson-Delmotte, V., 
Zhai, P., Portner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma- 
Okia, W., Pean, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., 
Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T. (Eds.), Global 
Warming of 1.5�C. An IPCC Special Report on the Impacts of Global Warming of 
1.5�C above Pre-industrial Levels and Related Global Greenhouse Gas Emission 
Pathways, in the Context of Strengthening the Global Response to the Threat of 
Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Press. 

Hosking, J.R.M., 1990. L-moments: analysis and estimation of distributions using linear 
combinations of order statistics. J. Roy. Stat. Soc. 52, 105–124. 

Iturbide, M., Guti�errez, J.M., Alves, L.M., Bedia, J., Cimadevilla, E., Cofi~no, A.S., Cerezo- 
Mota, R., Di Luca, A., Faria, S.H., Gorodetskaya, I., Hauser, M., Herrera, S., 
Hewitt, H.T., Hennessy, K.J., Jones, R.G., Krakovska, S., Manzanas, R., Marínez- 
Castro, D., Narisma, G.T., Nurhati, I.S., Pinto, I., Seneviratne, S.I., van den Hurk, B., 
Vera, C.S., 2020. An update of IPCC climate reference regions for subcontinental 
analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. 
Data Discuss. https://doi.org/10.5194/essd-2019-258 submitted for publication.  

Kalnay, E., Kanamitsu, M., Kistler, R., et al., 1996. The NCEP/NCAR 40-year reanalysis 
project. Bull. Am. Meteorol. Soc. 77 (3), 437–472. https://doi.org/10.1175/1520- 
0477(1996)077<0437:TNYRP>2.0.CO;2. 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., 
Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., 
Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., 
Jenne, R., Joseph, D., 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. 
Soc. 83, 1631–1643. 

Kharin, V.V., Zwiers, F.W., Zhang, X., Hegerl, G.C., 2007. Changes in temperature and 
precipitation extremes in the IPCC ensemble of global coupled model simulations. 
J. Clim. 20, 1419–1444. 

Kharin, V.V., Zwiers, F.W., Zhang, X., Wehner, M., 2013. Changes in temperature and 
precipitation extremes in the CMIP5 ensemble. Climatic Change 119, 345–357. 

Kim, Y.-H., Min, S.-K., Zhang, X., Zwiers, F.W., Alexander, L.V., Donat, M.G., Tung, Y.-S., 
2016. Attribution of extreme temperature changes during 1951–2010. Clim. Dynam. 
46, 1769–1782. 

Klein Tank, A.M.G., Zwiers, F.W., Zhang, X., 2009. Guidelines on analysis of extremes in 
a changing climate in support of informed decisions for adaptation. In: Climate Data 
and Monitoring WCDMP-No. 72, vol. 1500. WMO-TD No., p. 56 

Lu, C., Sun, Y., Zhang, X., 2018. Multimodel detection and attribution of changes in 
warm and cold spell durations. Environ. Res. Lett. 13, 074013. 

Marotzke, J., Jakob, C., Bony, S., Dirmeyer, P.A., O’Gorman, P.A., Hawkins, E., Perkins- 
Kirkpatrick, S., Le Qu�er�e, C., Nowicki, S., Paulavets, K., Seneviratne, S.I., Stevens, B., 
Tuma, M., 2017. Climate research must sharpen its view. Nat. Clim. Change 7, 
89–91. 

Min, S.-K., Zhang, X., Zwiers, F.W., Friederichs, P., Hense, A., 2009. Signal detectability 
in extreme precipitation changes assessed from twentieth century climate 
simulations. Clim. Dynam. 32, 95–111. 

Min, S.-K., Zhang, X., Zwiers, F.W., Hegerl, G.C., 2011. Human contribution to more- 
intense precipitation extremes. Nature 470, 378–381. https://doi.org/10.1038/ 
nature09763. 

Y.-H. Kim et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.wace.2020.100269
https://doi.org/10.1016/j.wace.2020.100269
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref1
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref1
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref1
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref1
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref1
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref1
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref1
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref1
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref2
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref2
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref2
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref2
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref2
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref2
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref2
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref2
https://doi.org/10.1002/qj
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref4
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref4
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref4
https://doi.org/10.1088/1748-9326/ab1c8e
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref6
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref6
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref6
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1038/s41558-018-0355-y
https://doi.org/10.1038/s41558-018-0355-y
https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production
https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref10
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref11
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref11
https://doi.org/10.5194/essd-2019-258
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref13
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref13
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref13
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref13
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref13
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref14
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref14
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref14
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref15
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref15
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref16
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref16
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref16
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref17
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref17
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref17
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref18
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref18
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref19
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref19
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref19
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref19
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref20
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref20
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref20
https://doi.org/10.1038/nature09763
https://doi.org/10.1038/nature09763


Weather and Climate Extremes 29 (2020) 100269

15

Min, S.-K., Zhang, X., Zwiers, F.W., Shiogama, H., Tung, Y.-S., Wehner, M., 2013. 
Multimodel detection and attribution of extreme temperature changes. J. Clim. 26, 
7430–7451. 

Paik, S., Min, S.-K., Zhang, X., Donat, M.G., King, A.D., Sun, Q., 2020. Determining the 
anthropogenic greenhouse gas contribution to the observed intensification of 
extreme precipitation. Geophys. Res. Lett. 47 (12) https://doi.org/10.1029/ 
2019GL086875 e2019GL086875.  

Park, C., Min, S.-K., 2019. Multi-RCM near-term projections of summer climate extremes 
over East Asia. Clim. Dynam. 52, 4937–4952. 

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., 
Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A., Taylor, K.E., 2007. 
Cilmate models and their evaluation. In: Solomon, S., Qin, D., Manning, M., Chen, Z., 
Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: the 
Physical Science Basis. Contribution of Working Group I to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge University 
Press, Cambridge, United Kingdom and New York, NY, USA.  

Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., 
Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., 
Zhang, X., 2012. Changes in climate extremes and their impacts on the natural 
physical environment. In: Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., 
Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., 
Midgley, P.M. (Eds.), Managing the Risks of Extreme Events and Disasters to 
Advance Climate Change Adaptation, A Special Report of Working Groups I and II of 
the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, 
Cambridge, UK, and New York, NY, USA, pp. 109–230. 

Sillmann, J., Kharin, V.V., Zhang, X., Zwiers, F.W., Bronaugh, D., 2013. Climate extremes 
indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present 

climate. J. Geophys. Res. Atmos. 118, 1716–1733. https://doi.org/10.1002/ 
jgrd.50203. 

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment 
design. Bull. Am. Meteorol. Soc. 93 (4), 485–498. https://doi.org/10.1175/BAMS-D- 
11-00094.1. 

Ting, H., Sun, Y., Zhang, X., Min, S.-K., Kim, Y.-H., 2020. Human influence on frequency 
of temperature extremes. Environ. Res. Lett. 15, 064014 https://doi.org/10.1088/ 
1748-9326/ab8497. 

Uppala, S.M., KÅllberg, P.W., Simmons, A.J., Andrae, U., Bechtold, V.D.C., Fiorino, M., 
Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., 
Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., 
Berg, L.V.D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., 
Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., H�olm, E., Hoskins, B.J., 
Isaksen, L., Janssen, P.A.E.M., Jenne, R., Mcnally, A.P., Mahfouf, J.-F., Morcrette, J.- 
J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., 
Vasiljevic, D., Viterbo, P., Woollen, J., 2005. The ERA-40 Re-analysis. Quart. J. Roy. 
Meteor. Soc. 131, 2961–3012. 

Xin, X., Wu, T., Zhang, J., Yao, J., Fang, Y., 2020. Comparison of CMIP6 and CMIP5 
simulations of precipitation in China and the East Asian summer monsoon. Int. J. 
Climatol. https://doi.org/10.1002/joc.6590. In press.  

Yin, H., Sun, Y., 2018. Detection of anthropogenic influence on fixed threshold indices of 
extreme temperature. J. Clim. 31, 6341–6352. 

Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Klein Tank, A., Peterson, T.C., 
Trewin, B., Zwiers, F.W., 2011. Indices for monitoring changes in extremes based on 
daily temperature and precipitation data. WIREs Clim. Chang. 2, 851–870. 

Zhang, X., Wan, H., Zwiers, F.W., Hegerl, G.C., Min, S.-K., 2013. Attributing 
intensification of precipitation extremes to human influence. Geophys. Res. Lett. 40 
(19), 5252–5257. https://doi.org/10.1002/grl.51010. 

Y.-H. Kim et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S2212-0947(19)30243-9/sref22
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref22
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref22
https://doi.org/10.1029/2019GL086875
https://doi.org/10.1029/2019GL086875
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref24
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref24
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref25
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref25
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref25
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref25
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref25
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref25
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref25
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref26
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1088/1748-9326/ab8497
https://doi.org/10.1088/1748-9326/ab8497
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref29
https://doi.org/10.1002/joc.6590
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref32
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref32
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref33
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref33
http://refhub.elsevier.com/S2212-0947(19)30243-9/sref33
https://doi.org/10.1002/grl.51010

	Evaluation of the CMIP6 multi-model ensemble for climate extreme indices
	1 Introduction
	2 Data and methods
	2.1 Data
	2.2 Climate extreme indices definition and calculation
	2.3 Model performance metric
	2.4 GEV analysis

	3 Results
	3.1 Temperature indices
	3.2 Precipitation indices
	3.3 Metric analysis of model performance
	3.4 20-year return level of annual maxima indices

	4 Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary data
	References


