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Abstract

This paper examines the impacts of the EU Emissions Trading System (ETS) on the environ-

mental and economic performance of Norwegian plants. The ETS is regarded as the cornerstone

climate policy in the EU and Norway, but there has been considerable debate regarding its ef-

fects due to low quota prices and substantial allocation of free allowances. The rich data allow

us to investigate potential e�ects of the ETS on several important aspects of plant behavior.

The results indicate a weak tendency of emissions reductions among Norwegian plants in the

second phase of the ETS, but not in the other phases. We �nd no signi�cant e�ects on emissions

intensity in any of the phases, but positive e�ects on value added and productivity in the second

phase. These positive e�ects may be due to the large amounts of free allowances, and that plants

may have passed on additional marginal costs to consumers.
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1 Introduction

Since the establishment of the EU Emissions Trading System (ETS) in 2005, emissions trad-

ing has been the cornerstone policy instrument to reduce greenhouse gas (GHG) emissions

in Europe. The aim of this paper is to investigate how the ETS has a�ected the environ-

mental and economic performance of Norwegian manufacturing plants. In particular, we are

interested in whether plants regulated by the ETS have reduced their emissions as a result

of the regulation. Emissions reductions can take place by scaling down production and/or

reducing emissions per output, and we also examine the e�ects on emissions per output,

referred to as emissions intensity. A positive price on emissions allowances (quotas) should

provide incentives to cut back on emissions. However, the price of allowances has periodically

been low, and manufacturing plants have received most of the allowances they need for free.

We also estimate the e�ects of the ETS on plants' value added and productivity. Although

environmental regulation puts constraints on plants, suggesting a negative impact, the Porter

Hypothesis (Porter and Van der Linde, 1995) suggests that environmental regulation can

increase plants' productivity and competitiveness as it provides incentives to innovate. When

it comes to the ETS, the extent of free allocation also matters: If plants receive most of their

allowances for free, and are able to pass on most of the marginal cost increase to consumers,

they may be better o� than without the ETS. The European Commission (2015) �nds that

a signi�cant share of the emissions price is passed on to consumers for a number of products

regulated by the ETS.

Martin et al. (2016) sum up the empirical evidence for the ETS so far, both regarding

emissions and �rms' performance. Some studies use aggregate data, and typically �nd emis-

sion reductions in the range 2-5 percent in phase I and/or II (see e.g. Ellerman and Buchner

(2008), Egenhofer et al. (2011), Anderson and Di Maria (2011) and Bel and Joseph (2015)).

There are relatively few studies of the ETS using �rm or plant level data. We are aware

of only �ve such studies estimating the e�ects on emissions. Abrell et al. (2011) use plant-
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level data for �rms in di�erent EU/EEA countries for the years 2005-08, �nding a signi�cant

reduction in emission growth when shifting from the �rst to the second phase (i.e., from

2007 to 2008). Wagner et al. (2014) use plant-level data for France to estimate the e�ects

of the two �rst phases of the ETS. They �nd evidence of signi�cant emissions reductions

in phase II, as well as indications of emissions reductions in phase I. On average emissions

were reduced by 15-20 percent. Similarly, Petrick and Wagner (2014) use plant-level data

for German manufacturing �rms for the years 2005-10, and �nd evidence of emissions re-

ductions in the second phase: Emissions were reduced by on average one �fth. Jaraite and

Di Maria (2016) also consider the years 2005-10, using plant-level data for Lithuania, �nding

no reductions in emissions, but a slight improvement in emissions intensity in 2006-7. Last

but not least, Dechezleprêtre et al. (2018) use plant-level data for four EU/EEA countries

(France, Netherlands, Norway and the UK), �nding signi�cant emission reductions in the

order of 10 percent between 2005 and 2012. There also exist studies on other emissions

trading systems using micro-data, such as Fowlie et al. (2012) who investigate e�ects of the

Southern California's NOx Trading Program (RECLAIM). The above mentioned studies

exploit that only a subset of plants or �rms were selected for program participation and

identify the closest match among the plants or �rms not selected for participation.1

When it comes to micro studies on economic performance, neither Abrell et al. (2011),

Wagner et al. (2014), Jaraite and Di Maria (2016) nor Dechezleprêtre et al. (2018) �nd

signi�cant impacts of the ETS. The same applies to Anger and Oberndorfer (2008), who

estimate the e�ects on revenues of German �rms in 2005, and Chan et al. (2013) who inter

alia examine impacts on material cost and revenue in the cement and iron&steel sectors in

ten EU countries over the years 2001-09. Commins et al. (2011), however, �nd negative

impacts on both value added and productivity of the �rst phase of the ETS on �rms across

the EU. On the other hand, Marin et al. (2018) �nd a positive impact on value added for

manufacturing �rms across the ETS in the second phase (2008-12). Löschel et al. (2019)
1Martin et al. (2014) use micro-data to analyze the impacts of the UK carbon tax, �nding strong negative e�ects

on energy intensity and use of electricity at manufacturing plants.
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�nd positive impacts on economic performance, measured as the distance to the stochastic

production frontier, for German manufacturing plants (especially during the �rst phase).

There are also a number of studies using micro-data to examine the e�ects of the ETS on

employment (e.g., Wagner et al. (2014) and Petrick and Wagner (2014)) or environmental

innovations (e.g., Borghesi et al. (2015), Löfgren et al. (2013), Calel and Dechezlepretre

(2016) and Calel (2018)).

We contribute to the existing literature in three ways. First, as already indicated there

are few econometric studies of the ETS using micro-data, especially when it comes to e�ects

on emissions. Decisions regarding emissions reductions take place at the plant level, and

quotas have been allocated to individual plants based on their historic activity (emissions

or output) or planned capacity. Thus, studies of the impacts of the ETS should ideally be

carried out at the plant level, which we do using Norwegian data. Second, our speci�cation

allows us to compare the e�ects of the di�erent phases. This is important as allocation

rules and quota prices have di�ered much between phases. None of the cited studies have

examined impacts beyond the second phase, and several have only examined the �rst and/or

part of the second phase. Third, our rich data set allows us to control for plant heterogeneity

through a number of control variables. For instance, we indirectly control for carbon taxes on

fossil fuels combustion, using plant speci�c data on relative energy prices (�dirty� vs �clean�).

Our paper also relates to the large theoretical literature on emissions trading and quota

allocation (e.g., the seminal paper by Montgomery (1972)). Allocation of allowances in

the ETS has to some degree been conditioned on plants' activity level, and hence may

have in�uenced plants' decisions.2 In the third phase beginning in 2013, allocation has

shifted towards output-based allocation. As shown by Rosendahl and Storrøsten (2015),

this gives �rms more incentives to reduce emissions intensities than auctioning (or lump sum

allocation). On the other hand, it is also possible that foresighted �rms correctly anticipated
2This is to some degree intentional, as policy makers in Europe do not want �rms to simply relocate to other

jurisdictions with lax climate policies. See the substantial literature on carbon leakage, e.g., Martin et al. (2014),
Böhringer et al. (2014).
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that allocation of allowances would be based on their historic emissions a few years before

the ETS was implemented, giving incentives to increase emissions before 2005.3

In order to identify the causal e�ects of the ETS, we exploit that only a subset of the plants

were selected for participation. Other plants, at least in the manufacturing industries which

we focus on, were mainly left unregulated with respect to GHG emissions, or have been

paying a carbon tax (see Section 3.2). We use matching methods based on the program

participation selection criteria to identify a comparable control group of plants that were

not selected for program participation. Then we use di�erence-in-di�erences, and as an

alternative, a �xed e�ects model, to investigate the e�ects of the ETS while controlling for

a number of other important variables.

Our results indicate weak evidence of emissions reductions among Norwegian plants in

the second phase of the ETS, but no signi�cant e�ects of the two other phases. Moreover,

we �nd no signi�cant e�ects on emissions intensity of any of the three phases. Further, we

identify positive e�ects of the second phase on both value added and productivity.

The rest of the paper is organized as follows. In Section 2 we present some background

information on the ETS. Section 3 contains a description of the data and of the variables

used in the empirical analysis. The econometric model and the results are presented in

Section 4. Finally, Section 5 concludes and suggests some policy implications.

2 The Norwegian and the EU Emissions Trading System

The EU ETS regulates GHG emissions from energy production and some large manufactur-

ing industries (see Ellerman et al. (2016) for a recent overview). Norway is not a member

of the European Union, but has since 2008 participated in the EU ETS through the EEA

(European Economic Area) Agreement between the EU and the EFTA countries. In this
3In the �rst two phases, allowances to Norwegian plants were grandfathered based on their emissions in 1998-2001.

For EU countries, the base years di�ered somewhat. For several EU countries, the base years for allocation in the
second phase included 2005, i.e., the �rst year of the �rst phase (Hintermann, 2010). The e�ects of di�erent allocation
rules have been studied analytically and numerically by e.g. Böhringer and Lange (2005), Rosendahl (2008) and
Golombek et al. (2013).
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section we give a brief description of the main elements of the three phases of the ETS, which

are important when discussing the empirical results.

In the �rst �pilot� phase of the ETS (2005-07), around 40 percent of EU's CO2 emissions

were regulated (cf. EU's quota directive 2003/87/EF). Almost all allowances were allocated

for free, mostly based on plants' historic emissions (�grandfathering�). The allowance price

was initially high (see Figure 2), but plummeted towards zero in 2007 as it became clear

that total allocation of allowances exceeded total emissions during this period.

In the �rst phase, Norway had an ETS that was not formally linked to the EU ETS.

However, the Norwegian authorities accepted EUAs (i.e., EU ETS allowances) in its own

ETS. Thus, Norwegian plants could buy allowances from EU plants, but not vice versa.

Trade was very limited, however, accounting for only about 0.1 percent of total emissions by

Norwegian ETS plants. As Norway introduced CO2 taxes in many sectors of its economy

in the 1990's, several industries were exempted from the ETS in the �rst phase although

corresponding industries in the EU were regulated by the EU ETS. Merely 10 percent of

Norwegian CO2 emissions, mostly from the processing industries, were regulated by the

ETS in this phase. Allocation of allowances was based on plants' emissions in the years

1998-2001. The very limited purchase of EUAs by Norwegian plants may suggest that the

overall allocation was quite generous; this is con�rmed by the fact that total allocation to

Norwegian plants in the �rst phase exceeded total emissions by 8 percent. It is therefore

relevant to ask whether Norwegian plants were facing a positive emissions price at all during

phase I. At least the EUA price seems to have played a minor role for these plants, given

the negligible trade in allowances between Norwegian and EU plants.4

In the second phase (2008-12) there were few changes in coverage and allocation rules

in the EU ETS. Again the EUA price started high, but following the �nancial crisis and

subsequent recession, the price dropped to moderate levels for the rest of phase II.
4According to the registry of the Norwegian Environment Agency, total trade in allowances between Norwegian

plants during phase I amounted to around 2.5 percent of total regulated emissions. Almost 90 percent of this trade
took place after the EU ETS price fell and then stayed below 1 Euro per ton in the spring of 2007.
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From 2008 Norwegian plants were fully integrated into EU ETS, and Norway could no

longer exempt industries from the ETS. Nitrous oxide (N2O) emissions from production of

nitric acid in Norway were opted in. Thus, the share of Norwegian GHG emissions regulated

by the ETS increased to around 45 percent. The allocation was still based on emissions in

the years 1998-2001, but plants with increased production and emissions since the base years

received additional allowances for free.

In the third phase (2013-2020) additional industries and gases, such as per�uorocarbons

(PFCs) from aluminium production, have been included. Around 50 (40) percent of the

EU's CO2 (GHG) emissions are now regulated by the ETS. The allocation rules have been

harmonized across member states. Manufacturing industries still get large amounts of al-

lowances, especially if they are categorized as signi�cantly exposed to carbon leakage, with

the allocation mainly based on plants' output in 2007-08. The EUA price was initially low

(below 10 Euro per ton until 2018), partly because of the continued recession and partly

because a large share of allowances was banked from the second to the third phase.

The EU harmonization in phase III also applies to Norway. For the Norwegian manu-

facturing indutries, the extent of free allowances has not changed much, but the allocation

rule has shifted in line with changes in the EU ETS. Total CO2 emissions from Norwegian

manufacturing plants regulated by the EU ETS in 2013 have shown little variation during

the estimation period, and were in 2013 2.6 percent below the level in 2004, but 1.8 percent

above the level in 2001 (see Figure A.1 in the Appendix). The highest level was observed

in 2010, shortly after the �nancial crisis. Emissions of N2O, which were regulated by the

ETS from the second phase, declined substantially from 2005 to 2009, whereas emissions of

PFCs, which were regulated from the third phase, declined signi�cantly from 2008 to 2010.

As a consequence, total GHG emissions from the regulated plants have declined notably

since the ETS was established in 2005, but at least for some plants the emissions reductions

took place before they became regulated by the ETS.

Figure 1 illustrates the trend in yearly mean EUA prices and the annual mean emissions
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Figure 1: Annual mean emissions per plant of CO2, N2O, and PFCs (in 1000 tons of CO2-
equivalents) of ETS regulated plants in the manufacturing industries (left hand axis) and
real (de�ated to 2013) ETS quota prices (right hand axis)

per plant. The emissions curves are phase speci�c, so that for instance the curve "Phase

II plants" shows how emissions (on average) have developed over time for plants that were

regulated from phase II and onwards. The �gure indicates a small reduction in mean plant

emissions for phase I plants from 2005 and for phase II plants from 2008, but emissions were

on average declining also the year before phase I and phase II plants became regulated. In

order to examine the e�ects of the regulation, we have to identify a relevant comparison

group and also account for the variation in other variables than the ETS regulation.

3 Data sources and description of variables

We have constructed a plant-level panel data set that draws on several data sets from di�erent

sources. All data sets are merged using organizational number of the subsidiary as the plant

8



identi�er. The data span 13 years, from 2001 to 2013. A key data set comprises the data

from the Norwegian Environment Agency (NEA) on annual emissions of all Norwegian plants

regulated by the Norwegian ETS or the Norwegian Pollution Control Act, including emissions

of CO2, N2O and PFCs (measured in CO2 equivalents).5 This data set allows us to identify

whether the plant is regulated by the ETS or not, and in which phase they enter.

The data are supplemented with annual plant level data containing information on num-

ber of employees, man hours, value added, energy use and prices, and industry a�liation.

The data originate from di�erent registers at Statistics Norway: Data on energy use and

data on structural business statistics for manufacturing, mining and quarrying. The data

set thus covers the industries B-C in the Standard Industrial Classi�cation (SIC2007). A

detailed description of the key variables is provided below, grouped into two main categories:

Dependent variables and control variables, including other relevant GHG regulations.

3.1 Environmental and economic performance

We study the e�ects of the ETS on several dependent variables: Emissions, emissions inten-

sity, labor productivity and value added. Our main measure of a emissions includes CO2,

N2O and PFC emissions, but we also consider CO2 emissions only.

Ideally, emissions intensity should be calculated as emissions relative to output produced

(e.g., emissions per ton of steel or per ton of cement). However, as the type of output di�ers

across plants and industries, it is challenging to compare output quantities across plants.

Moreover, we do not have data for the quantities produced, only the value of production.

Emissions intensity calculated as emissions relative to production value would be sensitive to

changes in the output price. A common measure of emissions intensity is therefore emissions

relative to the number of employees (see e.g. Wagner et al., 2014). As such a measure does

not take into account that some employees have part-time positions, are on sick leave, work

extra hours, etc., we instead calculate emissions intensity as emissions relative to man hours.
5According to the Norwegian Pollution Control Act, pollution is in general prohibited, but plants can apply for

pollution permits. The emissions data are publicly available on the Norwegian Environment Agency's website.
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As a plant could change its labor intensity during our estimation period, in Section 4.3 we

also consider an alternative measure of emissions intensity, calculated as emissions relative

to electricity use (measured in kWh per year). However, as the ETS should give incentives

to switch between di�erent energy goods, such as replacing coal or oil with electricity, our

preferred measure is emissions relative to man hours.

Value added at factor prices is the plant's annual gross production value minus the cost

of intermediates plus subsidies and minus taxes (except VAT). Production value is de�ned

as turnover corrected for changes in stock of �nished goods, work in progress and goods and

services bought for resale. Cost of intermediates is the value of goods and services used as

input in the production process, excluding �xed assets. Our measure of value added is an

o�cial measure taken from Statistics Norway.6 The value added in NOK is de�ated using

the Producer Price Index (PPI) with 2013 as the base year.

Productivity should be measured as output produced relative to the use of input. Again,

good measures of output is challenging to obtain as plants produce di�erent types of goods,

and we only have data on production value, not quantities produced. Despite this short-

coming, we use the value added at factor prices as a proxy for output. This measure has

the advantage that it is comparable across plants. Further, we use man hours as a proxy

for input, so that by plant productivity we mean labor productivity, i.e., value added at

factor prices per man hour. Note that our measure of productivity should not be mixed

with e�ciency � since productivity is calculated as value added divided by man hours, the

extent of free allocation to the �rms will also a�ect productivity even if it does not have any

in�uence on a �rm's operation or e�ciency.

3.2 Control variables

Contrary to studies at the industry level, we are able to take into account plant heterogeneity

in our analysis, and thereby reduce the problem of omitted variable bias. This relates both
6A more detailed description of the measures is available at the homepage of Statistics Norway.
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to plant characteristics, and to external factors for the plant such as prices and taxes.

If prices of fossil fuels increase relative to prices of carbon-free energy, �rms may have

incentives to reduce CO2 emissions independently of the ETS. Thus, we control for such price

changes. We derive plant-speci�c prices of petroleum, coal, gas and electricity as the plant's

expenses (including tax payments) on the respective energy good (in NOK) relative to the

corresponding energy content (in kWh). Electricity can be characterized as approximately

carbon-free in Norway.7 Hence, the relative energy price at the plant level is calculated as

the price of �dirty� energy (weighted petroleum, coal and gas prices) relative to the price of

�clean� energy (electricity).

Until the ETS was implemented, the cornerstone of Norwegian climate policy was a

non-uniform carbon tax implemented in 1991, with exemptions for many energy-intensive

manufacturing industries. As mentioned earlier, emissions regulated by the carbon tax were

exempted from the ETS in the �rst phase but not from the second phase (e.g., pulp and

paper). As the carbon tax has only been implemented on the use of fossil fuels, we indirectly

control for this tax through the plant-speci�c relative energy prices.8

In addition, there have been arrangements between the Ministry of Climate and Environ-

ment and the processing industry in Norway to reduce aggregate GHG emissions not covered

by the ETS or the tax. These voluntary agreements covered e.g. N2O emissions from the

production of nitric acid and PFC emissions from aluminium production, which were later

regulated by the ETS. One arrangement had a target for the year 2007, while the follow-up

arrangement had a target for 2008-12. According to the Norwegian Ministry of Climate and

Environment (2014, p. 98), reductions in N2O emissions from the production of nitric acid,

due to the use of a new technology, was su�cient to ful�ll the �rst arrangement. Thus, it is
7There is no emissions from electricity use, and renewable power (mainly hydro power) accounts for more than 95

percent of Norwegian (onshore) electricity production in the estimation period. Note that prices of electricity have
varied quite little over time during our estimation period, and less than prices of fossil fuels, cf. e.g. Figure 3 in Bye
and Klemetsen (2016).

8As changes in the carbon tax show up in changes in the relative energy price, this means e.g. that the estimated
e�ects of the ETS for plants that were initially regulated by the tax, at least in principle apply to the e�ects of the
ETS as such, and not to the net e�ects of replacing the carbon tax with the ETS.
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Figure 2: Mean plant emissions and emissions intensities (emissions per man hour) across
aggregated manufacturing industries. CO2, N2O and PFCs measured in CO2 equivalents.

di�cult to know whether these arrangements have had any in�uence on emissions, but since

the arrangements applied to the whole industry, and not to speci�c �rms, we do not have

reason to believe that they a�ected the treatment group di�erently than the control group.

We seek to control for these arrangements, as well as other industry speci�c e�ects through

the use of industry dummies. Figure 2 shows the plants' mean emissions and emissions

intensity per aggregated manufacturing industry in the estimation period. We see that plants

in Manufacturing of metals and minerals have the highest emissions and emissions intensities,

followed by plants in Manufacturing of chemicals, pharmaceutics, rubber and plastic. When

it comes to plant characteristics, we use the number of employees as a measure of plant size.

Common trends in emissions are controlled for using phase dummies.
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3.3 Sample summary statistics

Our initial sample of 665 Norwegian plants contains 4872 plant-year observations. Of these,

150 plants are regulated by the ETS at least one year. A small fraction are neither in

manufacturing industries nor mining and extraction, and these are dropped (plant level data

from Statistics Norway do not cover these industries). The control group is selected from the

total population of plants emitting CO2, N2O or PFCs (but not regulated by the ETS) using

nearest neighbor propensity score matching (see Section 4). After matching, our data set

consists of only manufacturing plants, i.e., there are no plants from the extraction industries

such as oil and gas (Table A.2 in the Appendix shows share of plant-year observations across

industries).9 Our �nal unbalanced panel data set consists of 1,567 plant-year observations

and 152 plants in the manufacturing industries, 72 of which are regulated by the ETS. In the

initial data set, 100 of the regulated plants were manufacturing plants, which means that we

keep slightly above 70 percent of these plants in our �nal data set.

Table 1 presents descriptive statistics for the matched sample, and demonstrates how the

treatment and the control group di�er with respect to observable variables. Table A.1 in

the Appendix shows the corresponding �gures before matching. The matching procedure

reduces the di�erences between the treatment and control group substantially with respect

to almost all variables (the exceptions are labor productivity and relative energy prices,

where di�erences are quite small in any case), but the di�erences are still large, especially

when it comes to emissions and emission intensities. The explanation is that only plants

above a certain capacity limit are regulated by the ETS, cf. Section 4, combined with

the fact that the Norwegian sample of similar plants acting as potential control plants is

relatively small. Hence, there is a trade-o� between heterogeneity and sample size. We use

additional methods to reduce the selection issues further, such as taking into account the

�xed e�ects through the Di�erence-in-di�erences model or a panel data model with plant
9The time paths of emissions and emissions intensities for oil and gas �elds are highly in�uenced by the depletion

of the �elds' reservoir. See Gavenas et al. (2015) for a study of CO2 emissions from Norwegian oil and gas �elds.
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Table 1: Summary statistics1 after matching, 2001-2013
Treatment group Control group

Variable Mean Median Mean Median

CO2, N2O and PFC emissions1 175,923 46,545 6,581 492
CO2 emissions1 149,901 39,964 6,510 492
CO2, N2O and PFC emissions intensity1 .438 .205 .047 .002
CO2 emissions intensity1 .399 .184 .046 .002
Labor productivity2 .57 .31 .42 .30
Number of employees 234.8 188 216.5 168
Relative energy prices (�dirty� over �clean�) 1.06 .86 1.33 1.09
Value added2 228,832 112,443 105,149 66,663
Electricity use (kWh) 571,235 176,062 65,701 19,205
Man hours 387,927 293,730 301,543 231,761
Wages2 91,607 62,522 59,134 38,923
Operating pro�ts2 103,752 46,253 68,069 41,252
Number of plant-year observations 743 824
Numer of plants 72 80
1All emissions are reported as tons of CO2-equivalents
2All values in million NOK are de�ated using the PPI with 2013 as base year.

�xed e�ects. The �xed e�ects model will pick up all observable and unobservable selection

and heterogeneity issues to the degree that these are time-invariant. To the degree that the

selection and heterogeneity varies over time, we rely on the plant level control variables.

Figure 3 illustrates the mean annual emissions intensities (index) for the matched sample

of plants that operate during the entire estimation period, distinguishing between the three

groups of treated plants and the control group. We see that plants included from phase I

display increasing trends in emissions intensities until 2004, then decreasing in 2005, before

increasing again in 2005-07, and then falling quite signi�cantly from 2008. The decrease from

2007 to 2008 could be due to the high quota price in 2008, although we notice a decrease in

emissions intensities for unregulated plants too. For plants included from phase II, emissions

intensities appear to have decreased substantially from 2008 (when phase II started) and

onwards. Plants included from phase III display a decreasing emissions intensity trend over

most of the period, including 2013 (the year phase III was initiated), and this is also the

case for plants which were never regulated by the ETS.
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Figure 3: Mean annual emissions intensities for the matched sample of plants (CO2 - equiv-
alent emissions of CO2, N2O and PFCs per man hour). Index: 2001=1

4 Empirical model and results

To investigate the e�ects of the ETS on Norwegian plants' environmental and economic per-

formance, we exploit the fact that only a subset of the plants were selected for participation.

The selection criteria is based on the type of pollutant, the plant activity (production of

speci�c types of goods) and the capacity limit. We do not observe capacity limits for plants

not regulated by the ETS, however.10 For each plant regulated by the ETS we identify

the closest matches among the plants not selected for participation in the ETS based on the

propensity score.11 The propensity score is the probability of receiving treatment conditional
10The capacity limit is speci�ed as e.g. total thermal e�ect (typically 20 MW), or tons of products (steel, cement

etc.) per hour or 24 hours. As the regulator selects plants for participation in the ETS based on the capacity limit,
regression discontinuity constitutes as a suitable method for estimating the e�ects of the ETS (see e.g. Lee and Lemieux
(2010)). However, the capacity limit varies with the main activity of the plant, and we do not have comparable data
on the plants' activity in the control group. Also, there is a lot of missing values for the capacity measures. With an
already small sample, it would thus not be manageable to use regression discontinuity methods based on the capacity
limit. The participation requirements are found in Law on Greenhouse Gas Emissions ("Klimakvoteforskriften").

11The matching procedure used is the STATA routine psmatch2 with 1-10 nearest neighbor matching. We perform
a robustness test using 1-3 neighbors (see Section 4.3).
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on some matching variables. The variables used are proxy measures of the participation re-

quirements. In this way we identify a comparable control group of plants that were not

selected for program participation. The probability of receiving treatment is conditional on

the observed values in the year 2001 of the matching variables:12 We require exact match

on type of pollutant, and also on our proxy for plants' type of activity, i.e., the industry

a�liation speci�ed by standard industrial codes at the 2-digit level.13 As continuous match-

ing variables we include predetermined levels of emissions (as proxy for capacity limit) and

number of employees (as a measure of plant size).

We calculate di�erence-in-di�erences, and as an alternative a �xed e�ects model, on the

matched sample. The sample average treatment e�ect is estimated using dummy variables

for each phase, indicating whether the plant participated in the ETS during this phase or

not. We use the subscripts i, t, and p to denote plant, year and phase.

4.1 Basic di�erence-in-di�erences (DID)

For all four dependent variables, in general denoted Y , we estimate a basic DID. We de�ne

Eit =

{
1 if plant i is ETS-regulated in year t

0 if plant i is not ETS-regulated in year t

Let Ti be the �rst year plant i is regulated by the ETS, and τ (p) the start-up year of phase p,

respectively 2005, 2008, and 2013 for phase I, II and III. We specify our model in logarithmic

form which means that we can interpret the estimates in terms of relative changes:
12The EU ETS was initiated in 2005, but was announced some years before (cf. Convery, 2009). In March 2000,

a Green Paper on emissions trading was issued by the EU Commission, and hence the year 2000 can be seen as the
announcement year of the EU ETS (cf. Wagner et al., 2014). In June 2001, the Norwegian government discussed
through a White Paper a possible Norwegian ETS from 2005 (Norwegian Ministry of Environment, 2001). Nine
months later, a new White Paper announced the start-up of the Norwegian ETS from 2005 (Norwegian Ministry of
Environment, 2002). Hence, the plants' predetermined characteristics in 2001 are used as matching variables. An
implication of this is that we do not allow entry of new plants after 2001 in our dataset.

13We perform a robustness test using the 3-digit level (see Section 4.3).
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log Yit = α0 +
∑

p∈{1,2,3}

πp I

(
τ (p) ≤ t < τ (p+ 1)

)
+

∑
p∈{1,2,3}

γp I

(
τ (p) ≤ Ti < τ (p+ 1)

)

+βp

∑
p∈{1,2,3}

Eit × I

(
τ (p) ≤ t < τ (p+ 1)

)
+ X′itb + εit (1)

In equation (1) α0 is the constant term. The next terms are time dummies for each phase.14

The parameters πp thus pick up common trends during the phases not attributed to the

ETS. The parameters γp are phase-group �xed e�ects that capture the mean di�erence

before treatment between each phase-group (i.e. plants entering in phase I, II and III)

and the control group. The phase-group �xed e�ects thus take into account heterogeneity

between groups of plants that enter the ETS in di�erent phases.

The parameters of main interest, βp, capture the treatment e�ects of being regulated by

the ETS in phase p (i.e., whether the plant is regulated in year t interacted with the phase

dummies). The interaction term is thus equal to 1 if plant i is regulated by the ETS in

year t and phase p includes year t. Note that we implicitly assume that the e�ect of phase p

regulation is the same for all plants regardless of when they entered the ETS (as long as they

were regulated in phase p). Our speci�cation takes into account that the quota prices, the

quota allocation rules and Norway's link with the EU ETS, have di�ered between phases.

Hence, also the treatment e�ects may di�er between phases. With respect to emissions

and emissions intensities, we expect a negative estimate of βp. Regarding the sign of the

estimated e�ects on value added and productivity, we do not have any prior expectation.

The vector Xit contains the control variables described in Section 3.2, including dummies

for industries (see Figure 2 for a list). The error term, εit, is assumed to be independent

of the covariates in Xit, the time dummies, the phase group �xed e�ect, and the treatment

variable. Number of employees is lagged by one year (t− 1) to avoid the potential problem

of reversed causality and to reduce potential problems of simultaneity. Before discussing the

results in Section 4.3, we present an alternative speci�cation.
14We include time dummies for each phase instead of year dummies because of the need for parsimony. This means

that the time e�ects are constrained to be constant within each phase.
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4.2 Panel data regressions with plant speci�c e�ects

It is possible that plant speci�c e�ects are not fully taken care of by the phase group �xed

e�ects. The validity of equation (1) rests most critically on the assumption that the treat-

ment variables are independent of the unobserved plant speci�c �xed e�ects. An endogeneity

problem occurs if unobserved variables that a�ect the dependent variables, also a�ect the

treatment variables. Thus, in an alternative model we specify plant speci�c e�ects as �xed

e�ects, to allow correlation between unobserved plant speci�c �xed e�ects, νi, and the treat-

ment variables.15 This allows selection into treatment based on unobserved time invariant

variables. A large part of the selection into treatment is likely to be time-invariant, as large

and polluting �rms usually tend to stay so (and vice versa for small and less polluting �rms).

Our basic identifying assumption is that conditional on a �xed �rm e�ect and a vector of

matching variables, the error term is independent of the treatment variables (unconfound-

edness). A testable implication is that that the ETS-regulated plants and the plants in the

control group should have a common pre-treatment trend, i.e. prior to the ETS regulation.

If not, there will be systematic selection into treatment based on di�erenced variables, e.g.

growth rates. Selection based on di�erenced variables is obviously is not picked up by the

�xed e�ect, but is likely to be correlated with non-treated (counterfactual) outcomes of the

treated �rms, violating the unconfoundedness assumption.16 The results of the speci�cation

test are reported in Table 2. As we cannot reject the null hypothesis of a common trend

in the years before the plants are regulated, we have reason to believe that most of the

selection and heterogeneity issues are time-invariant. The �xed e�ects model will pick up all
15An alternative could be to use instrumental variables. However, we are not aware of any variables that qualify as

instruments, as the proxies for the ETS regulation selection criteria are all correlated with the dependent variables.
16We do this by adding the term µI (t < Ti) to equation (2), testing the null hypothesis that µ = 0 against the

alternative that µ 6= 0. The estimates are positive, but not signi�cant and we cannot reject the null hypothesis of a
common trend. There is thus no indication of signi�cant time-variant heterogeneity between the ETS-regulated and
the control plants. Based on this speci�cation test the plant �xed e�ects and control variables are likely to capture
the most evident selection e�ects and heterogeneity between the ETS-regulated and the control plants. In Appendix
Table A.4 we report the results from a �xed e�ects panel data regression on a non-matched sample as a robustness
analysis. However, as other selection issues, i.e. not picked up by the �xed e�ect, can still be present, and because
matching is typically used in the ETS literature using micro data, we regard the estimations on the matched sample
as our main results.
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observable and unobservable selection and heterogeneity issues to the degree that these are

time-invariant. However, to the degree that the selection and heterogeneity varies over time,

we rely on the plant level control variables. Our �xed e�ects model is speci�ed as follows:

log Yit =
∑

p∈{1,2,3}

πp I

(
τ (p) ≤ t < τ (p+ 1)

)
+

∑
p∈{1,2,3}

βpEit × I

(
τ (p) ≤ t < τ (p+ 1)

)

+X′itb + νi + εit (2)

The speci�cation in equation (2) is more appropriate for causal interpretations than the

one in equation (1). However, the latter is much more parsimonious, which in particular can

matter for such a small data set as we employ here. We thus argue that the speci�cation in

equation (1) is also a relevant measure of the treatment e�ects of the ETS.

4.3 Results

4.3.1 Environmental performance

The estimated e�ects of the ETS on emissions are presented in Table 2. Column (1) displays

the results of the basic DID speci�cation (1), whereas column (3) displays the results of the

plant �xed e�ects speci�cation (2). The estimated coe�cients of main interest (βp), i.e., the

treatment e�ects, are displayed in the three �rst rows.

As seen in Table 2, we �nd no signi�cant e�ect on emissions in phase I. The same applies

to phase III, although the estimated e�ects are negative in both speci�cations. In phase II, on

the other hand, the estimated e�ect on emissions is negative and signi�cant at the 10 percent

level in both speci�cations. This is in line with what we observed in Figure 1 above. The

estimated coe�cients suggest an emission reduction of around 30 per cent (e−0.4−1 = −0.3),

which is quite substantial. If true, it would mean that annual GHG emissions from the

treated plants (i.e., the treatment group after matching) would have been about 5 million
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tons higher in 2008-12 without the ETS. Norway's total GHG emissions in this period were

on average 54 million tons per year. Given that we do not �nd signi�cant impacts in phase

III (2013), the estimated reduction in phase II may seem unrealistically high. Moreover, the

standard error of the phase II coe�cient is high, and hence the quantitative e�ect should be

interpreted with caution.

A possible explanation for the lack of signi�cant e�ect on emissions in phase I is that in

this phase, Norway had an ETS that was not formally linked with the EU ETS, and that

there may have been no binding cap on emissions from Norwegian plants in this phase (cf.

Section 2). Another reason may be the fact that this was a pilot phase, and that the plants

needed time to adjust to a new regulation. It is also possible that plants expected future

allocation to be based on their emissions in phase I, in which case there could actually be

some incentives to in�ate emissions. Moreover, it may take time to adjust to a new regulatory

regime, such as making investments in new equipment. Allocation was quite generous also

in phase II and III,17 but as Norwegian plants have been fully allowed to trade allowances

with EU plants from phase II, the ETS price should have been of importance. The price of

allowances was on average much higher in phase II than in phase III. This could possibly

explain why we �nd weakly signi�cant e�ect of phase II but not of phase III. Regarding the

control variables, the signs of the coe�cients are as expected.

Next, we investigate the e�ects on emissions intensity, see columns (2) and (4) in Table

2. We �nd no signi�cant e�ects of any of the three phases. The estimated e�ects of phase

II and III are negative in both speci�cations, but none are signi�cant. The signs of the

estimated β2 coe�cients are comparable with the ones for emissions. Yet, we cannot exclude

the possibility that none of the phases have caused any emissions intensity reduction.
17In phase III, the allocation rules were changed more signi�cantly, but most of the manufacturing industries still

receive close to 100 percent of the allowances they need for free (cf. Section 2).
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Table 2: E�ects on emissions (CO2 equivalent tons of CO2, N2O and PFCs) and emissions
intensities (emissions per hour)

(1) (2) (3) (4)
Response variable: Log of Log of Log of Log of

emissions emissions int. emissions emissions int.
Coef. Est. Est. Est. Est.

Treatment Phase I β1 .03 .06 -.07 -.09
(.21) (.19) (.39) (.15)

Treatment Phase II β2 -.40* -.20 -.38* -.28
(.22) (.20) (.20) (.19)

Treatment Phase III β3 -.02 -.07 -.07 -.14
(.41) (.33) (.39) (.27)

Time dummy Phase I π1 -.17 -.09 -.19* -.09
(.16) (.13) (.11) (.09)

Time dummy Phase II π2 -.11 -.21 -.25 -.26*
(.19) (.15) (.19) (.15)

Time dummy Phase III π3 -.24 -.17 -.40 -.26
(.40) (.28) (.41) (.25)

Group �xed e�ect Phase I γ1 3.46*** 3.10***
(.46) (.41)

Group �xed e�ect Phase II γ2 3.67*** 3.40***
(.52) (.51)

Group �xed e�ect Phase III γ3 3.37*** 3.13***
(.52) (.48)

Log of relative energy prices -.32*** -.30*** -.08 -.08
(.09) (.09) (.07) (.06)

Log of number of employees .90*** -.21 .80*** -.18
(.18) (.17) (.25) (.26)

Plant �xed e�ects νi No No Yes Yes
Plant speci�c control variables Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
Number of plant-year obs. 1,454 1,449 1,454 1,449
Number of plants 144 144 144 144
Equation number (1) (1) (2) (2)
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Treatment plants are
matched to control plants based on predetermined values of CO2, N2O and PFC emissions, number
of employees, and exact matching on industries at the 2-digit level. Columns (1)-(2) are basic DID
estimations with additional control variables. Columns (3)-(4) are panel data regression with plant
�xed e�ects and additional control variables.

Speci�cation test of common trend: Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.)
Ho : µ = 0 -.11 (.26) -.19 (.28) .14 (.20) .05 (.21)
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4.3.2 Economic performance

We also investigate the e�ects of the ETS on real value added and labor productivity among

Norwegian plants. The results are displayed in Table 3. Columns (1)-(2) display the results

of the basic DID speci�cation (1), whereas columns (3)-(4) display the results of the �xed

e�ect speci�cation (2).

For phase II, the estimated e�ects on value added and productivity are positive and

signi�cant. In both speci�cations, the estimated e�ect of phase II on value added is 0.24

(signi�cant at the 5 percent level), which implies an estimated 27 percent increase in value

added. The estimated e�ect of phase II on productivity is 0.25-0.26 (signi�cant at the 1

percent level in column (2) and at the 5 percent level in column (4)). For phase I and III,

the estimated e�ects on value added and productivity are positive but not signi�cant.

The positive e�ects on value addded and productivity of phase II may at �rst seem a

bit strange as the environmental regulation puts constraints on the plants. However, as

discussed in the introduction, there are several possible reasons for such an e�ect. First,

the manufacturing plants receive large amounts of free allowances. If they are able to re-

duce their emissions at relatively low costs, they can sell excess allowances and earn a pro�t

that possibly exceeds their abatement costs. Moreover, if the marginal costs are (partly)

passed on to consumers, their revenue could increase. The fact that we only �nd signi�cant

positive e�ects in phase II can be due to the relatively higher average quota price in this

phase compared to phase III, and the fact that Norway had an ETS that was not formally

linked with the EU ETS in phase I. Bushnell et al. (2013) show that stock prices for Euro-

pean carbon-intensive manufacturing industries declined when allowance prices were halved

in April 2006, suggesting a positive relationship between quota prices and economic perfor-

mance for the regulated plants. Further, the Porter Hypothesis (Porter and Van der Linde,

1995) points to the fact that environmental regulations give incentives to innovate, which

may spur productivity and competitiveness. However, as this process is likely to take some
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time, the former explanation might be more plausible.

Still, even though a positive e�ect on economic performance can be explained, the es-

timated size of the e�ect seems quite high - 25-30 percent increase in value added and

productivity. As a comparison, the average value of emission allowances across the treat-

ment group corresponds to around 10 percent of the average value added in this group.

Hence, although the estimated e�ects on value added and productivity in phase II seem ro-

bust across a number of speci�cations (see next subsection), the quantitative results should

be interpreted with caution.

4.3.3 Leakage within �rms

It could be argued that the emission reductions we �nd in phase II are at least partly due

to reallocation of activity, and hence emissions, across plants within the same �rm. That is,

a �rm can have incentives to reallocate some of its activity from regulated to unregulated

installations to reduce the regulatory burden for the former one. To test this, we can perform

the estimation at the �rm level rather than the plant level, or we can add some variables to

the plant level estimations above. We have tried both approaches.

Estimations at the �rm level comes with some issues. First of all, since the ETS regulation

is at the plant level, aggregating up to the �rm level makes the estimation less precise (unless

the reallocation issue is important). This is particularly so since many �rms have a variety of

di�erent plants producing di�erent goods. Moreover, ownership of plants sometimes change

over time, making it di�cult to generate a consistent data set with a su�ciently high number

of �rms (especially in the Norwegian case). In our sample, the number of units drops from

152 plants to 87, partly because of the aggregation and partly because we had to take out

some of the plants with changing ownership. As a result, we no longer �nd signi�cant e�ects

on emissions in any of the phases (the sign of the estimate is still negative in phase II).
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Table 3: E�ects on value added and productivity
(1) (2) (3) (4)

Response variable: Log of Log of Log of Log of
value added productivity value added productivity

Coef. Est. Est. Est. Est.

Treatment Phase I β1 .01 .01 .02 .01
(.11) (.11) (.11) (.11)

Treatment Phase II β2 .24** .26*** .24** .25**
(.10) (.10) (.10) (.10)

Treatment Phase III β3 .05 .04 .05 .07
(.17) (.17) (.17) (.17)

Time dummy Phase I π1 .29*** .38*** .25*** .35***
(.04) (.04) (.05) (.04)

Time dummy Phase II π2 .47*** .52*** .44*** .52***
(.05) (.05) (.05) (.05)

Time dummy Phase III π3 .50*** .56*** .42*** .55***
(.14) (.14) (.14) (.14)

Group �xed e�ect Phase I γ1 .48*** .47***
(.09) (.09)

Group �xed e�ect Phase II γ2 .05 .10
(.15) (.14)

Group �xed e�ect Phase III γ3 .65*** .66***
(.11) (.11)

Log of relative energy prices .06** .06** .004 .002
(.03) (.03) (.03) (.03)

Log of number of employees .98*** .02 .71*** -.07
(.05) (.05) (.14) (.08)

Plant �xed e�ects νi No Yes No Yes
Plant speci�c control variables Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
Number of plant-year obs. 1,567 1,564 1,567 1,564
Number of plants 152 151 152 151
Equation number (1) (1) (2) (2)
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Treatment plants
are matched to control plants based on predetermined values of CO2, N2O and PFC emissions,
number of employees, and exact matching on industries at the 2-digit level. Columns (1)-(2) are
basic DID estimations with additional control variables. Columns (3)-(4) are panel data regression
with plant �xed e�ects and additional control variables.

Next, returning to the plant level data set, we introduce two new dummy variables to the

estimations, to test the e�ects of leakage between plants within a �rm. A dummy variable

is set equal to 1 for ETS-regulated plants that belong to a �rm which also owns one or more

24



plants within the same 2-digit industry code not regulated by the ETS (but having GHG

emissions), and 0 otherwise. The other dummy variable is set equal to 1 for plants in the

control group that belong to a �rm which also owns one or more ETS-regulated plants within

the same 2-digit industry code, and 0 otherwise. If leakage takes place, we should expect

the sign of the �rst dummy to be negative, while the second to be positive. The results are

reported in Table A.3 in the Appendix, where δF and δT denote the �rst and second dummy,

respectively. We �nd no signi�cant e�ects for the �rst dummy, whereas the second dummy

is positive and almost signi�cant at 10 percent level in the �xed e�ect estimation (but not in

the basic DID estimation). Moreover, the estimated coe�cients for the treatment e�ect in

phase II are also una�ected. Hence, on the one hand there is weak evidence suggesting that

non-ETS plants may have increased their emissions, if they belong to a �rm that also owns

ETS-plants, while on the other hand there is no evidence that this is linked to the reduced

emissions among the ETS-regulated plants in phase II.

4.3.4 Robustness tests

To investigate the robustness of our �ndings we perform several robustness tests. These are

discussed in detail in the Appendix, and here we give a brief summary. First, we replicate an

even simpler version of Table 2, a basic DID without plant level control variables, obtaining

somewhat strengthened results for phase II, as expected. Second, seeing as the matching

procedure reduces our sample size signi�cantly, but still leaves a substantial amount of

heterogeneity, a robustness test only relying on the panel data model with plant �xed e�ects

and control variables seems reasonable. The �full� sample contains most Norwegian plants

emitting the relevant greenhouse gases (CO2, N2O and PFCs), except for oil extraction

plants. As expected, we �nd similar, but strengtened, results for phase II on emissions and

emissions intensity.

Third, we replicate Table 2 with emissions of CO2 only (i.e., excluding N2O and PFCs).

We �nd no signi�cant e�ects on emissions and emissions intensities in any of the phases (for
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both speci�cations). The estimated e�ects of phase II are still negative across speci�cations,

but not signi�cant at conventional levels (although very close in some speci�cations). Fourth,

we replace phase dummies with year dummies. The results are then very similar to the main

results, both with respect to environmental and economic performance. Fifth, we test the

e�ects of exluding the industry dummies. The results are again similar to the main results,

except that the e�ect of phase II on emissions is no longer signi�cant (although very close).

We also perform several robustness tests where we do not report detailed results. We

use an alternative measure of emissions intensity � emissions relative to electricity use (cf.

Section 3.1). The results in Tables 2-3 are largely con�rmed. Further, we use a sample with

1:3 nearest neighbor matching rather than 1:10. Again, the estimated coe�cients and the

corresponding p-values are very similar to those reported in Tables 2-3. Moreover, we include

the real quota price as a numerical variable. The estimates of the ETS treatment dummies

(and their signi�cance levels) are only marginally changed, whereas the estimate of the quota

price is always insigni�cant. Finally, we replicate Tables 2-3 on a sample of treated and non-

treated plants that are matched at the 3-digit industry level rather than at the 2-digit level.

The estimated e�ects of phase II on emissions are no longer signi�cant at conventional levels,

which might be related to the drop in number of plant-year observations from 1,567 to 1,134.

However, the estimated e�ects of phase II on value added and productivity are still signi�cant

and positive in both speci�cations.

5 Conclusions

In this paper we have examined impacts on Norwegian manufacturing plants of the ETS for

the years 2005-2013, using plant level data. We have found somewhat mixed results.

Our estimation results suggest that the ETS may have led to emissions reductions in

the second phase (2008-12). However, we do not �nd any signi�cant e�ects in the �rst

(2005-7) or the third phase (2013). Moreover, the results for phase II holds in some but not
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all robustness tests. Thus, the emission reduction found in phase II should be interpreted

with caution, although other studies have come to similar conclusions (see the introduction).

Further, the results based on 70-75 percent of the ETS-regulated manufacturing plants in

Norway, may not carry over to other Norwegian manufacturing plants. Furthermore, the

results can not be generalized to non-manufacturing industries regulated by the ETS, such

as the oil and gas industry which is the biggest ETS-regulated sector in Norway. When it

comes to emissions intensities, we �nd no signi�cant e�ects in any of the phases.

The limited e�ects on emissions and emissions intensity in our estimations can possibly be

explained by the fact that the manufacturing industries have received close to 100 percent

of the quotas they need to cover their business-as-usual emissions. Surplus quotas could

in principle have been sold to other plants, but low quota prices may have given limited

incentives for emissions reductions. When it comes to phase I, Norway was not formally

linked to the EU ETS, and it may be questioned whether there was any binding cap on

emissions for Norwegian plants in this phase. Finally, the quota price was on average higher

in the second phase than in the beginning of the third phase, which may explain why we

�nd signi�cant emissions reductions of phase II but not of phase III.

Our results further suggest that the ETS led to signi�cantly higher value added and

productivity in phase II. Again, we cannot be sure that this result carry over to the man-

ufacturing plants that do not belong to our treatment group (even if they are regulated by

the ETS), not to say non-manufacturing plants. This may be related to the large amounts

of free allowances. If all allowances were instead auctioned by the government, the plants'

costs would have been higher and thus value added and productivity lower. Furthermore,

the plants may have been able to pass on (parts of) the increased marginal costs to the

consumers, and hence increase their revenues through higher output prices. Finally, we no-

tice that increased productivity due to environmental regulation is also consistent with the

Porter Hypothesis.

We �nd no signi�cant e�ects in the two other phases on neither productivity nor value
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added, although the estimates are consistently positive. The explanation for �nding positive

and signi�cant impacts only in phase II could be the higher average quota prices.

In our study we control for phase time speci�c e�ects. However, it is possible that

treated plants were di�erently a�ected by e.g. the �nancial crisis if they were more or less

trade exposed than the control group. To our knowledge, empirical studies on the e�ects of

the ETS on plants' or �rms' emissions so far rely on matching methods in combination with

di�erence-in-di�erences strategies. However, although we have required exact matching with

respect to industry a�liation, di�erences between regulated and unregulated plants might

not be fully accounted for. Even after matching, the treatment group in our analysis has

much higher emissions and emissions intensities than the control group. As the regulator

selects plants for participation in the ETS based on the capacity limit (e.g., total thermal

e�ect or tons of products), regression discontinuity may constitute a suitable method for

estimating the e�ects of the ETS if su�cient data are available, although this method would

estimate a very local e�ect for the minority of installations being close to the capacity limit.

From a policy perspective, our results do not give clear conclusions with regard to whether

emissions trading lead to lower emissions. As emissions trading is a quantity instrument, it

should in theory lead to emissions reductions if the cap is set below the unregulated emissions

level. However, in our study we have only looked at Norwegian plants, and not all European

plants regulated by the EU ETS. Moreover, since plants regulated by the ETS are allowed

to bank allowances to the next phase, and also buy o�sets from the Clean Development

Mechanism (CDM), total emissions by all European plants regulated by the EU ETS may

well exceed the given emissions cap within a single year or phase.

In Norway, as well as in some other European countries, policy makers have been con-

cerned about domestic GHG emissions, setting targets for their national emissions. Some

countries have implemented climate policies in sectors already regulated by the ETS, such

as the Carbon Price Floor in the UK electricity sector. In Norway, some of the ETS sec-

tors also pay a CO2 tax (oil and gas industry and aviation). If policy makers in Norway
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are concerned about the domestic emissions in the ETS sectors, also in the manufacturing

industries, a natural suggestion would be to impose CO2 taxes also for these industries (or

a carbon price �oor similar to the one in UK). However, higher CO2 prices for Norwegian

plants than for other European plants could lead to relocation of manufacturing industry

from Norway to other European countries, with limited e�ects on global GHG emissions.

Given our �ndings that the Norwegian manufacturing plants have pro�tted from the ETS,

at least in the second phase, one may argue that the economic performance of Norwegian

plants on average would not be negatively a�ected by the ETS (compared to a situation

with no ETS) if a smaller share of the allowances were given away for free to the plants.

Free allocation of allowances is mainly motivated by the risk of carbon leakage. However,

Martin et al. (2014) show that the current allocation in the EU ETS results in �substantial

overcompensation for given carbon leakage risk�. As allocation rules are determined at

the EU level (also for the non-EU member Norway), the Norwegian authorities are not

in a position to adjust the allocation. Nevertheless, our results should be relevant when

considering the extent of allocation, both at the EU level and more generally.
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Appendix

Data description and additional tables
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Figure A.1: Total annual emissions of CO2, N2O, and PFCs (in million tons of CO2-
equivalents) from Norwegian manufacturing plants regulated by the ETS in 2013.

Table A.1: Share of plant-year observations across industries, 2001-2013
Before matching After matching

ETS plants Non-ETS plants Treatment Control
Industry Percent Percent Percent Percent
Mining and extraction (excluding oil and gas) 0.6 6.3 0 0
Oil and gas extraction 33.4 0.7 0 0
Manuf. of textiles and food 6.5 38.9 8.2 36.5
Manuf. of wood, pulp and paper 14.8 3.8 22.2 8.3
Manuf. of chem., pharmac., rubber and plastic 14.2 19.6 23.2 19.8
Manuf. of metals and minerals 26.2 18.1 46.4 34.4
Manuf. of machinery and electronics 4.3 12.5 .03 1.0

Total 100 100 100 100
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Table A.2: Summary statistics before matching, 2001-2013
ETS plants Non-ETS plants

Variable Mean Median Mean Median
CO2, N2O and PFC emissions2 212,483 70,412 3,887 60.0
CO2 emissions 175,715 43,241 3,835 47.0
CO2, N2O and PFC emissions intensity2 12.1 .185 .120 .0001
CO2 emissions intensity 10.8 .131 .118 .00004
Labor productivity3 .541 .412 .625 .324
Number of employees 211 161 125 77
Relative energy prices (�dirty� over �clean�) 1.05 .86 1.16 .98
Value added3 213,260 89,385 74,707 38,736
Electricity use (kWh) 486,111 99,953 23,079 7,114
Man hours 381,436 263,336 203,462 122,597
Wages3 102,060 72,922 51,836 30,064
Operating pro�ts3 119,672 45,223 51,801 20,583
Number of plant-year observations 1126 3746
Numer of plants 150 515
1All emissions are reported as tons of CO2-equivalents
2All values in million NOK are de�ated using the PPI with 2013 as base year.

Alternative estimations

In the main text, we gave a summary of the robustness tests. Here we provide more details

about their results. First, we report a simpler version of Table 2, a basic DID without plant

level control variables. The justi�cation for such a model is the potential for �bad controls�,

capturing parts of the e�ects that potentially are due to the regulation, or, on the other

hand, potential endogeniety. The results are reported in Table A.4 in columns (1) and (2),

and are quite similar to the main results, although the estimates for phase II are somewhat

strengthened.
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Table A.3: Robustness test including estimation of carbon leakage within �rms
(1) (2)

Response variable: Log of emissions Log of emissions
Coef. Est. (Std.Er.) Est. (Std.Er.)

Treatment Phase I β1 .04 (.25) -.05 (.19)
Treatment Phase II β2 -.40* (.23) -.36 (.20)
Treatment Phase III β3 -.02 (.41) -.06 (.39)
Potential leakage from δF -.03 (.80) .05 (.33)
Potential leakage to δT .05 (.90) .47 (.29)
Plant �xed e�ects νi No Yes
Plant speci�c control variables Yes Yes
Time dummies for each phase Yes Yes
Group �xed e�ect for each phase Yes No
Industry dummies Yes Yes
Number of plant-year obs. 1,454 1,454
Number of plants/�rms 144 144
Equation number (1) (2)
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Treatment
plants are matched to control plants based on predetermined values of CO2, N2O and PFC
emissions, number of employees, and exact matching on industries at the 2-digit level. Column
(1) is a basic DID estimation with control variables, whereas column (2) is a panel data
regression with plant �xed e�ects.

Table A.4: Robustness tests: Basic DID without control variables; Estimation on full (non-matched) sample
(1) (2) (3) (4)

Response variable: Log of Log of Log of Log of
emissions emissions int. emissions emissions int.

Coef. Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.)

Treatment Phase I β1 -.02 (.20) .15 (.18) -.08 (.13) -.02 (.13)
Treatment Phase II β2 -.64** (.30) -.25 (.22) -.43** (.18) -.37** (.18)
Treatment Phase III β3 -.10 (.42) -.15 (.35) -.25 (.21) -.20 (.21)
Plant �xed e�ects νi No No Yes Yes
Plant speci�c control variables No No Yes Yes
Time dummies for each phase Yes Yes Yes Yes
Group �xed e�ect for each phase Yes Yes No No
Industry dummies No No Yes Yes
Number of plant-year obs. 1,454 1,449 2, 165 2,164
Number of plants/�rms 144 144 281 281
Equation number (1) (1) (2) (2)
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Treatment plants in columns (1)-(2)
are matched to control plants based on predetermined values of CO2, N2O and PFC emissions, number of employees,
and exact matching on industries at the 2-digit level. Columns (1)-(2) are basic DID estimations without control
variables. Columns (3)-(4) are panel data regressions with �xed e�ects on the full (non-matched) sample.

Speci�cation test of common trend: Est. (Std.Er.) Est. (Std.Er.)
Ho : µ = 0 .22 (.23) .12 (.23)

The matching procedure reduces the sample size signi�cantly, but still leaves a substantial

amount of heterogeneity. Hence, we rely on the �xed e�ects model to take into account
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selection based on time-invariant variables, and on plant level control variables to take into

account selection based on time-varying variables. We tested the implicit assumption of the

�xed e�ects model of a common trend in the dependent variable prior to the regulation.

The speci�cation test statistic is reported in Table 2 (for the matched sample), and the

test statistic and the results based on the �full� sample in columns (3) and (4) of Table

A.4. The test statistic is never signi�cant and we cannot reject the null hypothesis of a

common trend (H0 : µ = 0). We thus have reason to believe that most of the selection and

heterogeneity issues are in fact already taken into account through the �xed e�ects and the

control variables. In the robustness test, there is no matching and the sample contains most

Norwegian plants emitting the relevant greenhouse gases (CO2, N2O and PFCs), except for

oil extraction plants.18 The estimated e�ects on both emissions and emissions intensity in

phase II are strengthened, as the signi�cance is now well within the 5 percent level. The

e�ects of the other phases are negative but not signi�cant, as in other speci�cations.
18The oil extraction plants (Standard industrial code 6 at the 2-digit industry level) are excluded as they are likely

highly di�erent from the other plants. Moreover, some plants are automatically excluded because of missing values.
Remaining plants are in Standard industrial codes B and C.
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Table A.5: E�ects on CO2 emissions and emissions intensity
(1) (2) (3) (4)

Response variable: Log of CO2 Log of CO2 int. Log of CO2 Log of CO2 int.
Coef. Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.)

Treatment Phase I β1 .20 (.14) .23 (.14) .05 (.10) .07 (.10)
Treatment Phase II β2 -.19 (.18) -.14 (.18) -.26 (.14) -.22 (.13)
Treatment Phase III β3 -.08 (.29) -.06 (.30) -.01 (.22) .02 (.22)
Time dummy Phase I π1 -.28** (.11) -.20* (.11) -.20* (.10) -.11 (.10)
Time dummy Phase II π2 -.36** (.13) -.24* (.13) -.14 (.12) -.10 (.13)
Time dummy Phase III π3 -.09 (.26) -.04 (.27) -.20 (.22) -.12 (.22)
Group �xed e�ect Phase I γ1 3.07*** (.42) 3.03*** (.41)
Group �xed e�ect Phase II γ2 2.76*** (.54) 2.80*** (.55)
Group �xed e�ect Phase III γ3 3.33*** (.51) 3.34*** (.52)
Log of relative energy prices -.30*** (.09) -.30*** (.09) -.02 (.02) -.03* (.02)
Log of number of employees .62*** (.17) -.39** (.17) .89*** (.18) .01 (.12)
Plant �xed e�ects νi No No Yes Yes
Plant speci�c control variables Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
Number of plant-year obs. 1,352 1,348 1,352 1,348
Number of plants 143 143 143 143
Equation number (1) (1) (2) (2)
Notes: *** p< 0.01, **p< 0.05, * p< 0.1. Robust standard errors in parentheses. Treatment plants are matched
to control plants based on predetermined values of CO2 emissions, number of employees, and exact matching
on industries at the 2-digit level. Columns (1)-(2) are basic DID estimations with additional control variables.
Columns (3)-(4) are panel data regression with plant �xed e�ects and additional control variables.

Third, we replicate Table 2 with CO2 emissions only (i.e., excluding N2O and PFCs).

This is a relevant robustness test as relatively few plants emit N2O or PFC emissions that

are regulated by the ETS. The reason is partly that CO2 emissions are much more widespread

than other GHGs, but also because the ETS has mainly focused on CO2. Obviously, this

speci�cation is more likely to accurately estimate the potential e�ects on CO2 emissions.

The results are displayed in Table A.5. In columns (1)-(2) we report the results of the

basic di�erence-in-di�erences model with control variables, whereas in columns (3)-(4) plant

�xed e�ects are included. We identify no signi�cant e�ects of phase I or phase III in any

speci�cation. This is similar to the results when all three GHGs are included. Further,

the estimated e�ects of phase II are negative across all speci�cations, but not signi�cant

at conventional levels (the lowest p-value of 0.11 is obtained in columns (3)-(4) including

plant �xed e�ects). The estimated e�ect on emissions (-0.26) is of the same order as the

corresponding estimate in Table 2 (-0.38), i.e., when N2O and PFC emissions are included.
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Table A.6: E�ects on emissions and emissions intensity. Robustness test with year dummies rather than time dummies
for each phase

(1) (2) (3) (4)
Response variable: Log of Log of Log of Log of

emissions emissions int. emissions emissions int.
Coef. Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.)

Treatment Phase I β1 .04 (.21) -.07 (.19) -.08 (.17) -.08 (.15)
Treatment Phase II β2 -.40* (.22) -.20 (.20) -.39** (.20) -.28 (.18)
Treatment Phase III β3 -.02 (.41) -.06 (.33) -.09 (.39) -.14 (.27)
Plant �xed e�ects νi No No Yes Yes
Plant speci�c control variables Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Number of plant-year obs. 1,454 1,449 1,454 1,449
Number of plants 144 144 144 144
Equation number (1) (1) (2) (2)
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Treatment plants are matched to
control plants based on predetermined values of CO2, N2O and PFC emissions, number of employees, and exact
matching on industries at the 2-digit level. Columns (1)-(2) are basic DID estimations. Columns (3)-(4) are panel
data regression with plant �xed e�ects.

Table A.7: E�ects on value added and productivity. Robustness test with year dummies rather than time
dummies for each phase

(1) (2) (3) (4)
Response variable: Log of Log of Log of Log of

value added productivity value added productivity
Coef. Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.)

Treatment Phase I β1 -.01 (.11) .001 (.11) -.02 (.10) -.01 (.10)
Treatment Phase II β2 .25** (.10) .27*** (.10) .22** (.10) .26** (.10)
Treatment Phase III β3 .06 (.17) .05 (.17) .09 (.17) .07 (.17)
Plant �xed e�ects νi No No Yes Yes
Plant speci�c control variables Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Number of plant-year obs. 1,352 1,348 1,352 1,348
Number of plants 143 143 143 143
Equation number (1) (1) (2) (2)
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Treatment plants are matched to
control plants based on predetermined values of CO2, N2O and PFC emissions, number of employees, and exact
matching on industries at the 2-digit level. Columns (1)-(2) are basic DID estimations. Columns (3)-(4) are panel
data regression with plant �xed e�ects.

In our main analysis we assume for e�ciency that time dummies (one for each phase) is

su�cient to control for e�ects over time that are common for the ETS-regulated plants and

control plants. In a robustness test we check whether this assumption holds by replacing the

time dummies with year dummies. Years dummies are more likely to pick up on common

trends in the entire period. The results are very similar to the main results, and are reported

35



in the Appendix Tables A.6-A.7.

We use exact matching at the industry level as participation in the ETS is contingent

on the plant activity. Moreover, industry dummies are included in the analysis as industry

speci�c e�ects not related to the ETS could be present (e.g. related to technology devel-

opment or the voluntary arrangements between the Ministry of Climate and Environment

and the processing industry mentioned in Section 3.2). However, the industry dummies

might also capture parts of the e�ect of the ETS. Hence we perform robustness analysis

exluding industry dummies. The results are reported in the Appendix Tables A.8-A.9. The

results are similar to the main results, except that the e�ect of phase II on emissions is no

longer signi�cant within conventional levels (although very close). It is thus unlikely that

the industry dummies capture parts of the e�ect of the ETS.

We also perform a number of robustness tests for which we do not provide tables. We

replicate the results of Tables 2 and A.5 using the alternative measure of emissions intensity

mentioned in Section 3.1 � emissions relative to electricity use. The results are largely

con�rmed as the estimates and the corresponding p-values are similar to those in Tables

2 and A.5. Next, we replicate Tables 2-3 on a sample with 1:3 nearest neighbor matching

rather than 1:10. Again, the estimates and the corresponding p-values are only marginally

changed. Further, we perform an estimation including the real quota price as a numerical

variable. The estimates of the ETS treatment dummies (and corresponding signi�cance

levels) for each phase are only marginally changed, whereas the estimate of the quota price

is always insigni�cant. This may suggest that the annual quota price is less important

than the average quota price over some years. Finally, we replicate Tables 2-3 on a sample

of treated and non-treated plants matched at the 3-digit rather than the 2-digit industry

level. The estimated e�ects of phase II on emissions are no longer signi�cant at conventional

levels, which might be related to the drop in number of plant-year observations from 1,567

to 1,134. However, the estimated e�ects of phase II on value added and productivity are

still signi�cant and positive in both speci�cations.
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Table A.8: E�ects on emissions and emissions intensity. Robustness test without industry dummies
(1) (2) (3) (4)

Response variable: Log of Log of Log of Log of
emissions emissions int. emissions emissions int.

Coef. Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.)

Treatment Phase I β1 .09 (.22) .14 (.20) -.07 (.17) -.09 (.15)
Treatment Phase II β2 -.37 (.23) -.16 (.20) -.38* (.20) -.28 (.18)
Treatment Phase III β3 .08 (.43) -.01 (.34) -.07 (.39) -.14 (.27)
Plant �xed e�ects νi No No Yes Yes
Plant speci�c control variables Yes Yes Yes Yes
Time dummies for each phase Yes Yes Yes Yes
Group �xed e�ect for each phase Yes Yes No No
Industry dummies No No No No
Number of plant-year obs. 1,454 1,449 1,454 1,449
Number of plants 144 144 144 144
Equation number (1) (1) (2) (2)
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Treatment plants are matched
to control plants based on predetermined values of CO2, N2O and PFC emissions, number of employees, and
exact matching on industries at the 2-digit level. Columns (1)-(2) are basic DID estimations. Columns (3)-(4)
are panel data regression with plant �xed e�ects.

Table A.9: E�ects on value added and productivity. Robustness test without industry dummies
(1) (2) (3) (4)

Response variable: Log of Log of Log of Log of
value added productivity value added productivity

Coef. Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.) Est. (Std.Er.)

Treatment Phase I β1 .01 (.11) .01 (.11) -.02 (.11) -.01 (.11)
Treatment Phase II β2 .27*** (.10) .29*** (.11) .22** (.10) .26** (.10)
Treatment Phase III β3 .06 (.17) .05 (.17) .08 (.17) .07 (.17)
Plant �xed e�ects νi No No Yes Yes
Plant speci�c control variables Yes Yes Yes Yes
Time dummies for each phase Yes Yes Yes Yes
Group �xed e�ect for each phase Yes Yes No No
Industry dummies No No No No
Number of plant-year obs. 1,352 1,348 1,352 1,348
Number of plants 143 143 143 143
Equation number (1) (1) (2) (2)
Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Treatment plants are matched
to control plants based on predetermined values of CO2, N2O and PFC emissions, number of employees, and
exact matching on industries at the 2-digit level. Columns (1)-(2) are basic DID estimations. Columns (3)-(4)
are panel data regression with plant �xed e�ects.
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