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Abstract: 43 

Nearly three-quarters of the growth in global carbon emission from burning of fossil fuels 44 

and cement production between 2010 and 2012 occurred in China1,2. Yet estimates of 45 

Chinese emissions remain subject to large uncertainty; inventories of China's total fossil 46 

fuel carbon emissions in 2008 varied by 0.3 GtC, or 15 per cent1,3-5. The primary sources of 47 

this uncertainty are conflicting estimates of energy consumption and emission factors, yet 48 

none of these estimates are based upon actual measurements of Chinese emission factors. 49 

Here, we re-evaluate China's carbon emissions using updated and harmonized energy 50 

consumption and clinker production data and two new and comprehensive sets of measured 51 

emission factors for Chinese coal. We find that total energy consumption in China was 10 52 

per cent higher in 2000-2012 than the value reported by China's national statistics6, that 53 

emission factors for Chinese coal are on average 40 per cent lower than the default values 54 

recommended by the Intergovernmental Panel on Climate Change-IPCC7 and that 55 

emissions from China's cement production are 45 per cent less than recent estimates1,4. 56 

Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and 57 

cement production is 2.49 GtC (2σ=±7.3 per cent) in 2013, which is 14 per cent lower than 58 

the emissions reported by other prominent inventories1,4,8. Over the full period 2000 to 2013, 59 

our revised estimates are 2.9 GtC less than previous estimates of China's cumulative carbon 60 

emissions1,4. Our findings suggest that overestimation of China's emissions in 2000-2013 61 

may be larger than China's estimated total forest sink in 1990-2007 (2.66 GtC)9 or China’s 62 

land carbon sink in 2000-2009 (2.6 GtC) 10 and implies additional 25-70 per cent quota11 in 63 

the cumulative future emissions that can be emitted by China under a 2C warming target 64 

relative to the preindustrial era.  65 

Reports of national carbon emissions 7,12-15 are based on activity data (i.e., amounts of fuels 66 

burned) and emission factors (i.e. amount of carbon oxidized per unit of fuel consumed), with 67 

these factors estimated as the product of the net carbon content (i.e. tons carbon per joule), net 68 

heating value (i.e. joules per ton coal), total carbon content (i.e. tons carbon per ton coal) and 69 

oxidation rate (i.e. carbon oxidized per carbon content, see Methods). The uncertainty of China’s 70 

emissions estimates is typically reported as ±5 to ±10%4,14,16, but this range is somewhat arbitrary 71 

because neither the activity data nor the accuracy of emission factors is well known. For instance, 72 

national activity data is substantially different from the sum of provincial activity data17, and the 73 

emissions factors used are not based on up-to-date measurements of the fuels actually being 74 

burned in China, of which the quality and mix are known to vary widely from year to year, 75 

especially for coal18. Indeed, using different official sources of activity data and emissions factors 76 

can result in estimated emissions that vary by up to 40% in a given year (see Methods). 77 

Here, we present revised estimates of Chinese carbon emissions from burning of fossil fuels 78 

and cement production during the period 1950-2013 using independently assessed activity data 79 

and two sets of comprehensive new measurements of emission factors. Results suggest that 80 

Chinese CO2 emissions have been substantially overestimated in recent years; 14% less than the 81 

estimates by EDGAR 4.2 (EDGAR being adopted by IPCC as the emission baseline) in 2013 and 82 

12% less than the latest inventory China reported to the UNFCCC (in 2005). The difference is 83 

due primarily to the emission factors used to estimate emissions from coal combustion; our 84 

measurements indicate that the factors applicable to Chinese coal are in average about 40% lower 85 

than the defaults values recommended by the IPCC 7,15and used by previous emissions 86 

inventories1,4,19. 87 



 

In re-evaluating Chinese energy consumption, we adopt the “apparent consumption” 88 

approach14,16, which does not depend upon energy consumption data (which previous studies have 89 

shown to be not very reliable17,20). Instead, apparent energy consumption is calculated from a 90 

mass balance of domestic fuel production, international trade, international fueling, and changes 91 

in stocks which data are less subject to “adjustment” by reporting bodies and accounting errors 92 

related to either energy consumed during the fuel processing or assumptions about the mix of fuel 93 

types (especially coal) being used by individual consumers. Further, this approach allows 94 

imported and domestically-produced fuels to be tracked separately so that appropriate emission 95 

factors can be applied to these fuels (See Methods). 96 

Apparent consumption of coal, oil and natural gas in China in 2013 was 3.84 Gt, 401.16 Mt, 97 

and 131.30 Gm3, respectively. Between 1997 and 2012, we estimate that cumulative energy 98 

consumption was 10% greater than the national statistics and 4% lower than provincial statistics 99 

(Extended Data Figure 3). In addition, our results indicate a higher annual growth rate of energy 100 

consumption than national statistics between 2000 and 2010 (9.9% yr-1 instead of 8.8% yr-1), 101 

which the 10% higher growth rate is consistent with satellite observations of NOx
21,22, although 102 

NOx to fuel emission factors change with time as well.  103 

Given the large fraction of CO2 emissions from coal combustion (80% between 2000 and 2013), 104 

estimates of total emissions are heavily dependent on the emission factors used to assess coal 105 

emissions. Thus, we re-evaluate each of the variables that determine these emission factors. The 106 

mean total carbon content of raw coal samples from 4,243 state-owned Chinese coal mines 107 

(which 4,243 mines represent 36% of Chinese coal production in 201123; Fig. 1) is 58.45% (Fig 108 

2a), and the production-weighted total carbon content is 53.34%. 109 

These results straddle the result of an independent set of 602 coal samples from the 100 largest 110 

coal-mining areas in China (which areas represent 99% of Chinese coal production in 201123; Fig. 111 

1) reveal a similarly low mean carbon content of 55.48% (Fig. 2b), and a production-weighted 112 

mean total carbon content of 54.21%. The net carbon content of these same samples is 26.59 tC 113 

TJ-1, or 26.32 tC TJ-1 if weighted by production (Fig. 2c), and their net heating value is 20.95 PJ 114 

Mt-1, or 20.6 PJ Mt-1 if weighted by production (Fig. 2d). Although the measured net carbon 115 

content of these samples is within 2% of the IPCC default value (25.8 tC TJ-1), the heating value 116 

from these coal samples (20.95 PJ Mt-1) is significantly less than either the IPCC default value of 117 

28.2PJ Mt-1 or the mean value of US coal of 26.81PJ Mt-1 24. The lower heating value of Chinese 118 

coal reflects its generally low quality and high ash content (Fig. 2e and Fig. 2f). For example, the 119 

average ash content of our 602 coal samples was 26.91% compared to the average ash content of 120 

US coal, 14.08%24, but consistent with recent studies25.  121 

Finally, we assessed the oxidation rate (carbon oxidized per carbon content) of the fossil fuels 122 

consumed by 15 major industry sectors in China with 135 different combustion technologies (See 123 

Supplementary Data) as analyzed by the National Development and Reform Commission (NDRC) 124 

in 200826. We calculate a production-weighted average oxidation rate for coal of 92%, somewhat 125 

lower than the IPCC default value of 98%, but generally consistent with China-specific values 126 

reported by the NDRC (94%)26, China’s National Communication (NC) that reported to 127 

UNFCCC (92%)8, and Peters et al., 2006 (in average 93%)27. Our estimates of the oxidation 128 

values of oil and natural gas in China (98% and 99%, respectively) are each within 1% of the 129 

IPCC default value. 130 

Combining our revised estimates of carbon content, heating value, and oxidation value, we 131 

derive new emission factors for coal, natural gas, and oil burned in China. The revised emission 132 



 

factors are different than IPCC defaults by -40%, +13%, and -1%, respectively (Fig. 3). In turn 133 

applying these lower emission factors to our revised estimates of energy consumption, our best 134 

estimate of Chinese carbon emissions from fossil fuel combustion in 2013 is 2.33 GtC using the 135 

carbon content of 4243 coal mine samples and 2.31 GtC if the carbon content of 602 coal samples 136 

is used. Based on the residual scatter of carbon contents from these independent sets of coal 137 

samples (Fig. 1), the associated 2σ uncertainty related to coal carbon content is on the order of 138 

3%. Additional uncertainty on Chinese emissions is provided by varying estimates of coal 139 

consumed, by ±10% as evidenced by the range between national and provincial activity data15. 140 

Combining these two numbers gives the 7.3% uncertainty range of Chinese fossil fuel carbon 141 

dioxide emissions.  142 

We also used clinker production data28 to re-calculate CO2 emissions from cement production 143 

(which accounts for roughly 7%-9% of China’s total annual emissions in recent years4). This 144 

direct method avoids use of default clinker-to-cement ratios (e.g., 75% and 95% in IPCC 145 

Guidelines7,12), and results in emissions estimates that are 32%-45% lower than previous 146 

estimates (0.17 Gt C yr-1 in 2012 compared to 0.30 reported by the CDIAC and 0.24 by EDGAR; 147 

Extended Data Fig. 5). The clinker-to-cement ratio calculated by clinker production is 58%, or 148 

~23% lower than the latest IPCC default values. The new, lower estimated cement emissions are 149 

consistent with factory-level investigations29 and several other recent studies30,31. 150 

Together, our revised estimates of fossil fuel and cement emissions in 2013 is 2.49 GtC (2σ = 151 

±7.3%), the new estimates (1.46 GtC in 2005) is 12% less than the latest inventories China 152 

reported to the UNFCCC (1.63 GtC in 2005, 2σ = ±8) and 14% less than the estimates by 153 

EDGARv4.2 (2.84 GtC in 2013, 2σ = ±10%) (Fig. 4). By t-test, our revised estimates of fossil 154 

fuel and cement emissions during 2000-2013 is in generally lower (at 90% level) than estimates 155 

by EDGAR (P=0.016) and CDIAC (P=0.077). 156 

Our new estimate represents a progression for improving estimate of annual global carbon 157 

emissions, reducing the global emissions in 2013 by 0.35 GtC, an amount larger than the reported 158 

increase in global emissions between 2012 and 2013 32. A systematic reduction of fossil fuel and 159 

cement emissions of 0.35 GtC translates into a 15% smaller land sink, when this term is 160 

calculated as a residual between anthropogenic carbon emissions, atmosphere carbon growth and 161 

the ocean carbon sink32, and is two times of the estimated carbon sink in China’s forests (0.18 162 

GtCy-1) 9. Thus it implies a significant revision of the global carbon budget32. Over the full period 163 

2000 to 2013, the downward revision of cumulative emissions in China by 2.9 GtC (13%) is 164 

larger than the cumulative forest sink in 1990-2007 (2.66 GtC)9 or China’s land carbon sink in 165 

2000-2009 (2.6GtC) 10. Depending upon how the remaining quota of cumulative future carbon 166 

emissions is shared among nations, a correction of China’s current annual emissions by 10% 167 

suggests a 25% (Inertia basis) or 70% (Blended basis) difference in the cumulative future 168 

emissions that can be emitted by China under a 2C warming target11. Evaluating progress toward 169 

national commitments to reduce CO2 emissions depends upon improving the accuracy of annual 170 

emissions estimates and reducing related uncertainties. 171 
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Figures (uploaded separately 269 

 270 

Figure 1 | Total carbon content and production of coal mines. The inset shows the comparison between carbon 271 

content from 602 coal samples and 4243 coal mines (R=0.59, P<0.001, n=104). Each dot in the inset indicates the 272 

average of carbon content from 602 coal samples and 4243 coal mines in the same 1 degree by 1 degree grid. The 273 

nearly one-to-one correlation indicates that samples and mines capture the same spatial variability of coal carbon 274 

content across China. 275 
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 278 

 279 

Figure 2 | Histograms of Chinese coal properties.  Total carbon content of 4243 coal mines (a) and 602 coal 280 

samples (b). Dashed lines show mean, and shading indicates 90% and 95% intervals. c and d, show net carbon content 281 

(c) and net heating values of the 602 coal samples, respectively. Carbon content for coal mines (a) and samples (b) are 282 

significant lower than IPCC value, which is mainly because of the lower heating values, v, of China’s coal (d), net 283 

carbon content is close to the IPCC value (c). Total moisture (e) and ash content (f) further proved the low quality of 284 

China’s coal, which is in general with high ash content but low carbon content.   285 
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 288 
Figure 3 | Comparison of emission factors. (in 2012).  289 

IPCC: default value from IPCC guidelines for national emission inventories (1996, 2006). 290 

NDRC: value reported by National Development and Reform Commission (NDRC) in 200826 291 

NC: China’s National Communication (NC) that reported to UNFCCC (2012 for value in 2005)8 292 

All error bars are 2σ errors 293 
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 296 

Figure 4 | Estimates of Chinese CO2 emissions 1990-2013. Total carbon emissions from combustion of fossil fuels 297 

and manufacture of cement in China from different sources (IEA, EIA and BP estimates do not include the emission 298 

from cement production). The yellow dots are the numbers China reported to UNFCCC in year 1994 and 2005. The 299 

red-shaded area indicates the 95% uncertainty range of carbon emissions calculated by this study, assuming the 300 

emission factors during the period 1990-2013 are the same as those determined in the 2012 in this study. 301 
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