Sharing a quota on cumulative carbon emissions

Michael R. Raupach^{1*}, Steven J. Davis², Glen P. Peters³, Robbie M. Andrew³, Josep G. Canadell⁴, Philippe Ciais⁵, Pierre Friedlingstein⁶, Frank Jotzo⁷, Detlef P. van Vuuren^{8,9}, Corinne Le Quéré¹⁰

¹Climate Change Institute, Australian National University, Canberra, ACT 0200, Australia

²Department of Earth System Science, University of California, Irvine, CA, USA

³Center for International Climate and Environmental Research – Oslo (CICERO), Norway

⁴Global Carbon Project, Oceans and Atmosphere Flagship, Canberra, ACT 2601, Australia

⁵IPSL-LSCE, CEA CNRS UVSQ, Centre d'Etudes Orme des Merisiers, 91191 Gif sur Yvette, France

⁶College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, UK

⁷Crawford School of Public Policy, Australian National University, Canberra, ACT 0200, Australia

⁸PBL Netherlands Environmental Assessment Agency, AH Bilthoven, The Netherlands

⁹Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands

¹⁰Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, NR47TJ, UK

*Corresponding author (email: michael.raupach@anu.edu.au)

Any limit on future global warming is associated with a quota on cumulative global CO₂ emissions. We translate this global carbon quota to regional and national scales, on a spectrum of sharing principles that extends from continuation of the present distribution of emissions to equal per-capita distribution of cumulative emissions. A blend of these endpoints emerges as the most viable option. For a carbon quota consistent with a 2-degree warming limit, the necessary long-term mitigation rates are very challenging (typically over 5% per year), both because of strong limits on future emissions from the global carbon quota and also the likely short-term persistence in emissions growth in many regions.

Climate modelling studies¹⁻⁶ have established a robust near-linear relationship between global warming and cumulative CO₂ emissions since industrialisation. This implies a "carbon quota" or cap on future cumulative CO₂ emissions if global warming is to be kept below any nominated limit (such as 2 degrees above preindustrial temperatures⁷) with a nominated chance of success⁸⁻¹⁰. Accounting for the combined effects of CO₂, non-CO₂ gases and other agents such as aerosols, quotas on all-time cumulative CO₂ emissions of approximately 3500 and 3200 GtCO₂ are necessary to restrict global warming to less than 2 degrees above preindustrial temperatures with 50% and 66% chances of success, respectively¹⁰. These quotas are significantly smaller than known global fossil-fuel reserves^{2,11,12}.

The carbon quota implies that future cumulative CO_2 emissions consistent with a given warming limit are a finite common global resource that must necessarily be shared among countries, whether through prior agreement or as an emergent property of individually determined national efforts. The problem of sharing the global mitigation effort is addressed in an extensive literature, from the perspectives of equity, international policy and institutions, and economics and financing¹³⁻²². Here we combine perspectives from two previously distinct strands of analysis – the global carbon quota and effort-sharing – to infer the regional and national implications of global carbon quotas under a wide range of possible sharing strategies.

The need for multiple approaches is heightened by the present impasse in the search for long-term climate safety. Two broad approaches have been pursued hitherto in international negotiations: "top-down" international agreements such as the 1997 Kyoto Protocol²³, and "bottom-up" nationally determined contributions to a global outcome. The top-down approach has stalled over nearly two decades²⁴. An approach based on nationally determined contributions is now being explored²⁵, but current commitments in sum are far short of what is needed to meet internationally agreed climate goals²⁶⁻²⁹.

The present impasse arises fundamentally because the sharing challenge forms a "tragedy of the commons"³⁰ or collective-action dilemma³¹. The challenge of governing common natural resources has developed a rich literature encompassing issues of governance, institutions, communities and ethics³²⁻³⁴. In broad terms, this literature suggests that solutions to the underlying problem of collective action can emerge from individual actions by participants (here countries), given adequate social capital³⁵ to support a framework for adaptive governance³³. When the sharing challenge is framed in this way, emphasis shifts away from questions about global rules ("What shares of the carbon quota should be allocated to every country?") to questions about consistent local behaviours ("If others acted consistently with our proposed share of the carbon quota, would the global outcome be acceptable to us?"). This perspective further motivates a direct connection between the global carbon quota and effort-sharing analyses, to explore frameworks that can infer the global implications of a proposed share of the carbon quota by any one country, were others to act on similar principles.

To establish principles we focus on the sharing of fossil-fuel CO₂ emissions, the largest single contributor to radiative forcing and climate change³⁶. CO₂ emissions from land use change are now a relatively small fraction of total CO₂ emissions ($8 \pm 3\%$)³⁷, declining with time, and subject to significant uncertainty at global scale and even more at regional scales^{37,38}. Inclusion of CO₂ emissions from land use change is straightforward in principle, though data uncertainties would require careful assessment. In the absence of historic attribution the effects would be small for most regions, but large for tropical forest countries where land clearing is still ongoing. More significant at global scale is the role of non-CO₂ forcing agents, both accounted in inventories (the major non-CO₂ greenhouse gases) and unaccounted (aerosols). However, full inclusion of these forcing agents in extensions to carbon quotas at regional and national scales is beyond the present scope, requiring more complex climate modelling to resolve issues such as local impacts of short-lived climate forcers^{39,40}, nonlinear force-response relationships⁴¹, and cooling by some aerosol species³⁶.

Ways of sharing a cumulative emission quota

A common-pool resource can be shared objectively among participants in a social-ecological system by distributing the resource according to a set of observable metrics. In the case of the carbon quota, two generic metrics are measures of "inertia" (also known as "grandfathering"²²) and "equity", the inertia metric reflecting the distribution of emissions and the equity metric reflecting the population distribution. These metrics would suggest two alternative sharing principles:

$$s_j(\operatorname{Emis}) = \frac{f_j}{F}; \quad s_j(\operatorname{Pop}) = \frac{p_j}{P}$$
 (1)

where s_j is the share of the quota to country j; f_j and p_j are emissions (current or cumulative) and population (present or future) for country j; and F and P are corresponding emissions and population for the world. Shares sum to 1 over all countries ($\sum s_j = 1$) because $\sum f_j = F$ and $\sum p_j = P$. Depending on the choice of reference times for emissions and population, this formulation can accommodate sharing by current or historic emissions, and can account for expected future changes in population.

In their simplest forms, both options in Eq. (1) face major difficulties. Sharing by present emissions (inertia) would leave developing countries with little access to the energy and development opportunities embodied in remaining future carbon emissions, while sharing by population (equity) would impose extremely high mitigation demands on many developed countries. This has motivated the analysis of "blended" sharing principles¹⁶⁻¹⁸ that can compromise between the endpoint positions. One possibility (among others explored below) is that the share of the quota to country *j* is

$$s_j(w) = (1-w)\frac{f_j}{F} + w\frac{p_j}{P}$$
⁽²⁾

where *w* is a "sharing index" between 0 and 1, weighting between the endpoints of sharing by inertia (w = 0) and by equity (w = 1). This principle also satisfies the requirement $\sum s_j = 1$. It can be regarded as a simplified form of the contraction-and-convergence algorithm¹⁶⁻¹⁸, applied to a total carbon quota rather than to emissions trajectories specified through time; the key simplification is independence from specific assumptions about emissions pathways through time.

Using Eq. (2), Figure 1 shows how *w* influences the shares of a global carbon quota assigned to 10 regions that span the world (Europe, North America, Pacific OECD, Reforming Economies, Middle East, China+, India+, Rest of Asia, Africa, Latin America), with the "inertia" term in Eq. (2) based on current distribution of emissions and the "equity" term based on a projected future population distribution for the mid-21st century (SI Text 1, Methods). The last four regions receive greater shares with increasing weighting of equity (increasing *w*), while the shares for the other six regions decrease. This occurs because the response of the share s_j to a region *j* to increasing *w* hinges on whether its per-capita emission (f_j/p_j) is less than or greater than the global average per-capita

emission (F/P) (SI Text 2); the last four regions have below-global-average per-capita emissions (Figure S1).

The concept of a blended sharing principle can potentially be generalised to include additional metrics of responsibility and/or capability^{19,21}; for example, the distribution of Gross Domestic Product (GDP) as a measure of capability to undertake mitigation efforts (SI Text 2). The influences of emissions and GDP on sharing are broadly similar because both are correlated with development status, and both are very different to the influence of population (Figure S1). Therefore we focus mainly on emissions and population using Eq. (2), and briefly explore later the effect of also including GDP in the sharing principle. We also note that allocated shares and quotas are not the same as actual future cumulative emissions if emissions are tradable between countries, as discussed later.

Regional carbon quotas

The global carbon quota from the past to the long-term future (when emissions fall to zero) is

$$Q^{\text{Tot}} = Q^{\text{Past}}(\text{FFI}) + Q^{\text{Past}}(\text{LUC}) + Q^{\text{Future}}(\text{FFI}) + Q^{\text{Future}}(\text{LUC})$$
(3)

where Q^{Tot} is the quota for anthropogenic CO₂ emissions from a reference time (here 1870) to the far future, including contributions from fossil fuel combustion and industrial processes (FFI) and net land use change (LUC); Q^{Past} is the past emission, and Q^{Future} is the shared available future emission. Past cumulative CO₂ emissions from 1870 to the end of 2012 were 1922 GtCO₂ (1396 from FFI and 526 from LUC)³⁷. Global LUC emissions have decreased since 2000 to 8 ± 3% of total emissions in 2013³⁷ and are expected to continue to decrease; a linear decrease to zero in 2100 would imply Q^{Future} (LUC) = 137 GtCO₂.

We consider here the sharing of the available quota of future fossil-fuel emissions Q^{Future} (FFI), henceforth Q^{Avail} . The all-time carbon quota Q^{Tot} is estimated¹⁰ as 3500 GtCO₂ for a climate goal of keeping warming below 2 degrees with 50% chance of success, accounting for both CO₂ and non-CO₂ influences (all quota estimates are rounded to nearest 100 GtCO₂). This implies $Q^{\text{Avail}} = 1400 \text{ GtCO}_2$ for future FFI emissions from 2013 on. For warming limits of 2.5 and 3 degrees at 50% chance of success, the equivalent quotas are (Q^{Tot} , Q^{Avail}) = (4400, 2300) and (5300, 3200) GtCO₂, respectively¹⁰. The available carbon quota for country *j* is a share $q_j^{\text{Avail}} = s_j Q^{\text{Avail}}$ of the global quota. Figure 2 shows the resulting quotas for 10 regions (Figure 1) and for the world, with shares s_j from Eq. (2) for three values of *w* (0, 0.5 and 1, corresponding to inertia-based, blended and equity-based sharing), and with available quotas Q^{Avail} corresponding to warming limits of 2, 2.5 and 3 degrees at 50% chance of success. Global quotas are independent of *w* but the regional quotas depend strongly on *w*, with increasing *w* causing the quotas to increase for regions with low per-capita emissions, and *vice versa* (SI Text 2).

The regional quotas can be assessed against two independently determined quantities. First, committed emissions (orange bars in Figure 2) are estimates of future emissions from existing CO₂-emitting infrastructure that will continue for infrastructure lifetimes without early retirement⁴²⁻⁴⁴ (SI Text 1). Committed emissions in North America, Europe and China exceed quotas for a 2-degree warming limit under equity sharing (w = 1), implying a requirement to either retire or improve such infrastructure before its design lifetime, or to compensate these emissions by negative emissions later in the century or by some form of offset such as emission trading (see below). For the world, committed emissions are about half of the available quota Q^{Avail} for a 2-degree warming limit.

Second, quotas can be compared with fossil-fuel reserves of coal, oil, gas, unconventional oil and unconventional gas (Figure 2). Reserves are the part of total resources currently identified as economically viable for extraction. Globally and in most regions, estimated reserves¹² substantially exceed the global quota Q^{Avail} for warming limits up to and beyond 3 degrees, in agreement with other assessments^{2,11}. Estimates of total fossil-fuel resources are even larger, implying that further exploration for new fossil fuel reserves would not be consistent with warming limits of 3 degrees or lower, in the absence of carbon sequestration¹¹ at very large scales.

The distribution of the mitigation challenge

A simple measure of the challenge implied by the available quota for any region or country (before any possible redistribution by emissions trading) is the time for which the quota would last if emissions were held steady at current levels until the quota is exhausted, $T_j = q_j^{\text{Avail}}/f_j$. This "emission time"¹⁰ depends strongly on the sharing index *w* (Figure S2). With pure emission-based sharing (*w* = 0), the emission time for all countries is the same and equals the global emission time Q^{Avail}/F . As *w* increases to yield pure population-based sharing at *w* = 1, the emission time increases (decreases) for regions with per-capita emissions less (greater) than the global average, as for shares (SI Text 2).

If emissions were to decrease at a steady exponential rate starting immediately, an emission time T would correspond to a decrease in emissions at a fractional rate 1/T (or 100/T percent per year). However, this estimate of a required reduction rate to meet a given quota is too low if the mitigation effort must first overcome existing emissions growth, because of persistence effects. Persistence in emissions growth arises from the times needed to implement new low-emission energy technologies on the energy supply side, and to adopt energy efficiency measures and make behavioural changes in energy consumption on the demand side. Persistence is evident in emissions data (Figure S3). The supply-side aspects of this persistence arise mainly from the committed emissions in existing, long-lived energy infrastructure^{42,43} (Figure 2).

We account for persistence in emissions growth by representing the future emissions of a country, region or the world with an analytic capped-emissions trajectory that blends initially linear growth at rate r with eventual exponential decline at a mitigation rate m. Continuity requirements determine this trajectory uniquely (SI Text 3):

$$f(t) = f_0 \left(1 + \left(r + m \right) t \right) \exp\left(-mt \right)$$
(4)

where f(t) is the emission at time t, f_0 is the emission at the start of mitigation (t = 0), and r and m both have units 1/y. When mitigation is started at t = 0 (with a positive initial growth rate r), the resulting emission trajectory increases, peaks and eventually declines exponentially at the rate m (Figure S4). A possible delay in starting mitigation can also be included (SI Text 3). By incorporating such a delay, Eq. (4) can provide a good representation of the trajectories of CO₂ emissions from fossil fuels in the four Representative Concentration Pathway (RCP) scenarios⁴⁵ prior to any introduction of negative emissions (Figure S5). This indicates that Eq. (4) is suitable for empirically describing persistence effects in emissions trajectories.

To meet a specified available cumulative emission quota, persistence in emissions growth causes the necessary eventual characteristic rate of decline in emissions (*m*) to be typically more than twice the rate 1/T that would be required if exponential decline could commence immediately (SI Text 3, Eq. (S8)). This occurs because the persistence in emissions growth in the early phase of the mitigation effort has to be compensated by more rapid later decline (larger *m*). Figure 3a shows the mitigation rates *m* needed to meet an available carbon quota $Q^{\text{Avail}} = 1400 \text{ GtCO}_2$ (a 2-degree warming limit at 50% success probability), for the world and in 10 regions, with sharing index w = 0, 0.5 and 1. The required global mitigation rate to meet the quota is 5.5% per year (independent of sharing index), more than twice the reduction rate 1/T if exponential decline could start immediately because of persistence in emissions growth. This result is consistent with scenario-based analyses that account for policy delay^{46,47}.

With pure emission-based sharing (w = 0), m varies little among regions (Figure 3a); it is not identical across regions (in contrast with the emission time T; Figure S2) because of regional variations in the initial growth rate r. With pure population-based sharing (w = 1), m varies greatly among regions, from 1.4% per year (Africa) to over 15% per year (North America). With a blended sharing principle (w = 0.5), required mitigation rates are intermediate between the endpoint options w = 0 and w = 1, but very different in most cases from a simple average of the endpoints. For North America, the required mitigation rate at w = 0.5 is about 30% more than with emission-based sharing (w = 0); for Africa, it is about 70% less. Therefore, a shift from emission-based to blended sharing principle leads to large benefits for developing regions at the cost of a much smaller increase in the demands on developed regions, as quantified by fractional changes in the required mitigation rates m.

Regional mitigation rates are also strongly sensitive to the global carbon quota, determined by the warming limit and probability of success. If the required probability of success for a 2-degree limit is increased from 50% (as in Figure 3a) to 66%, then the required global mitigation rate *m* increases from 5.5 to 7% per year, with commensurate increases for regions and countries (Figure 3b). For warming limits of 2.5 and 3 degrees at 50% success probability, the required global mitigation rates fall to 3.7 and 2.9% per year (respectively) with commensurate decreases at regional and national levels. Even a 3-degree limit (with a much higher risk of dangerous climate change⁴⁸) requires significant global and national mitigation.

To explore further the distribution of the mitigation challenge at national level, we focus on a set of 14 representative countries (SI Text 1, Methods) that span the development spectrum in terms of both per-capita emissions and rates of development (Figure S6; a national-level counterparts of Figure 2 is at Figure S7). The required mitigation rates m for these countries, prior to any possible emission trading, are plotted against present per-capita emissions in Figure 4. Increasing equity (larger w) causes the mitigation challenge to respectively increase and decrease for countries with per-capita emissions above and below the world average, pivoting about that point. For least-

developed countries with very low per-capita emissions, a shift from w = 0 (inertia) to 0.5 (blended) reduces the mitigation challenge from near the world average to near zero, because these countries collectively account only for a small share of global emissions.

The implication is that a blended sharing principle can avoid the opposite difficulties associated with the end-point sharing principles at w = 0 (which would be prohibitive for least-developed countries) or w = 1 (which would be prohibitive for developed countries because of required mitigation rates exceeding 15% per year). Such compromises will be necessary in applying "equity principles of responsibility and capability to apportion the burden of emissions reductions [and] address concerns of both the global North and South"²⁴.

Together, Figures 3 and 4 demonstrate the interplay between the three major factors determining required regional and national mitigation rates: the warming limit, the nominated chance of success, and the sharing principle (here w). The first two are comparably important everywhere. The sharing principle (w) has dominant but opposite effects for countries at opposite ends of the development spectrum, but small effects for countries close to the pivot point defined by global-average per-capita emissions (Figure 4). In particular, China has a high required mitigation rate (because of currently high emissions growth) that is not strongly sensitive to the choice of w.

Additional factors

To this point we have not yet considered several additional factors that can be assessed within the framework of Eq. (2) or its generalisations (SI Text 3) as part of future climate policy regimes.

Extent of inclusion of historic emissions: It has been suggested^{41,49,50} that historic responsibility for climate change be included in principles for sharing the mitigation challenge. In a carbon-quota approach, this involves defining an attribution start date in the past and then sharing cumulative global emissions from that time onward rather than from the present (SI Text 4). A shift to this sharing principle has no effect on required global mitigation rates but has large implications for regions and countries. With historic attribution, required mitigation rates for developed regions become very large because attributed historic emissions approach (or even exceed) allocated shares for future emissions (Figure S8). The corresponding benefits for developing regions are not as large as might be expected because historic emissions for these regions are low.

Effect of delaying mitigation: It is well known that delay in starting mitigation has a profound effect on the steepness of the mitigation challenge^{51,52}. Noting that our analysis already includes persistence before a peak in emissions is reached, an additional 10-year delay would increase the required global mitigation rate *m* from 5.8 to over 9% per year (with global quota $Q^{\text{Avail}} = 1400 \text{ GtCO}_2$), with commensurate increases in regions (Figure S9).

Consumption-based and territorial emissions accounting: Consumption-based inventories for national CO₂ emissions⁵³ augment established territorial inventories⁵⁴ by attributing emissions to countries where products are consumed rather than where emissions of manufacture occur⁵⁵⁻⁵⁷. Under consumption-based accounting, the emissions of manufacturing-export countries such as China are reduced by up to 20% in recent years (relative to territorial accounting) and emissions of importing countries are correspondingly increased^{37,58}. Use of consumption-based rather than territorial emissions leads to only a small change in shares and mitigation rates for regions and countries (Figure S10), because the favourable effects of consumption-based accounting for manufacturing-export countries are offset by the effects of their typically high persistence in emissions growth. Still, consumption-based emissions accounting may contribute to negotiation of agreements²⁴.

Effect of timing of population distribution: Sharing by population can be based on a future population forecast (the default for this paper; SI Text 1), or on present population distribution. There is only a small sensitivity of required mitigation rates to whether sharing occurs on the population distribution at a future time when the global population is 9 billion, or on the distribution in 2013 with a global population of 7 billion (Figure S11).

Effect of including GDP in the sharing principle: Equation (2) can be generalised to include additional metrics such as GDP (SI Text 2). If the emissions distribution in Eq. (2) is replaced completely with the GDP distribution, the resulting effect on shares and mitigation rates is moderate but not large (Figure S12), because both emissions and GDP are correlated with development status. Sharing principles combining three or more metrics (emissions, GDP, population, ...) can be constructed (SI Text 2). The most important clusters of metrics are those that represent development status (such as emissions and GDP) and those representing population.

Negative emissions: Model-based scenario studies indicate pathways to a range of warming limits, through transformations in energy systems and other mitigation measures¹³. For limits around 2 degrees or less, such scenarios often depend upon the use of negative emissions^{13,59,60} through

strategies such as land-based biosequestration or bioenergy with carbon capture and storage (BECCS). Most 2-degree scenarios propose significant gross negative emissions to offset gross positive emissions that may be difficult or impossible to avoid, and many propose net negative emissions from the late 21st century. To the extent that gross negative emissions offset gross positive emissions, they are handled naturally by the cumulative carbon quota approach because the carbon quota applies to net (gross positive less gross negative) emissions. This applies at regional and national scales just as at global scale.

Shared responsibility and collective achievability

A longstanding idea in analyses of burden sharing has been that countries need to test and explain how their own nominated climate goals fit with a global outcome^{16,20,22,61,62}. Engagement in such testing is a key requirement for a robust solution to the climate-change challenge through adaptive governance. As a methodological contribution to assist in this kind of testing, the present work combines existing analyses of the global carbon quota and effort-sharing. The carbon-quota approach offers the important simplification of independence from assumptions about emissions pathways in time, yielding a transparent methodology for translating global to national carbon quotas under a wide range of possible sharing principles.

The question of achievability is clearly central¹³. The required global mitigation rates emerging from our analysis are high, typically over 5% per year for a 2-degree limit at 50% success probability (and 8% per year for China, a rate that remains very high under any sharing principle; Figure 4). These rates can be compared with the distribution of maximum mitigation rates predicted by the ensemble of IPCC AR5 scenarios (Figure S13). For scenarios with CO₂ peaking below 530 ppm, the median of the distribution of maximum rate of emissions decline is approximately consistent with the required rates from our analysis if there is no delay in starting mitigation, but even a five-year delay causes the required rate to approach the upper edge of the distribution.

While the global quota is determined biophysically, the resulting distribution of effort among countries can be made more achievable by emissions or quota trading and related instruments. These can help to make very high national mitigation targets achievable, given sufficient globally connected trading systems and an effective price on emissions. Quota trading means that an initial quota does not determine the actual future cumulative emission for a country; it also can improve the overall cost-effectiveness of the global mitigation effort, and facilitate transfer payments

between countries to help achieve desired distributional outcomes. It is an open question whether such payments can be actually implemented at large scale.

For the emergence of long-term, cooperative solutions to anthropogenic climate change^{33,35}, one essential element is an ability to perceive the consistent global consequences of local actions, given great differences in national economies and histories. The social capital that underpins cooperative governance of the commons takes time to evolve, but the biophysical realities of climate change demand solutions within decades. This is why the development of new perspectives on the sharing challenge is vital.

Acknowledgments

M.R.R. and J.G.C. acknowledge support from the Australian Climate Change Science Program of the Department of Environment, Australian Government. G.P.P. and R.M.A. were supported by the Norwegian Research Council (236296). P.C. acknowledges support from the European Commission's 7th Framework Programme under Grant Agreements 603864 (HELIX) and the ERC Synergy Project P-IMBALANCE. P.F. was supported by the European Commission's 7th Framework Programme under Grant Agreements 282672 (EMBRACE) and 603864 (HELIX). C.L.Q. was supported by the UK Natural Environment Research Council (NERC)'s International Opportunities Fund (project NE/103002X/1) and EU/FP7 project GEOCarbon (283080). The authors are grateful to Drs Charles Wilson and Hedda Ransan-Cooper for insightful comments. This work is a contribution to the Global Carbon Project (http://www.globalcarbonproject.org).

Author Contributions

M.R.R. designed the study, carried out calculations and coordinated the conception and writing of the paper. S.J.D. contributed data on committed emissions and drew figures. G.P.P. and R.M.A. contributed data on committed emissions and resources. All authors contributed to the writing of the paper.

Competing Financial Interests

The authors declare no competing financial interest.

Figures

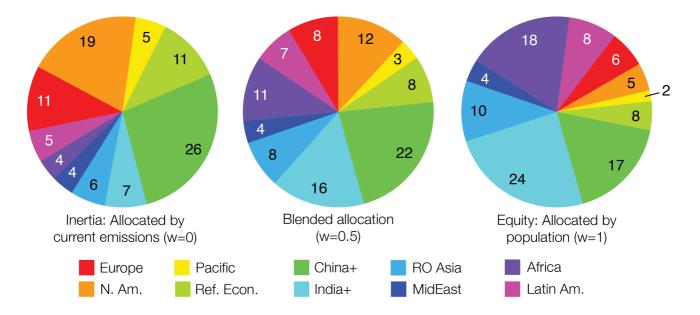


Figure 1: Sharing the carbon quota pie. Piecharts show shares of an available carbon quota allocated to 10 regions (Europe, North America, Pacific OECD, Reforming Economies, China+, India+, Rest of Asia, Middle East, Africa, Latin America) under three sharing principles based on Eq. (2), with sharing index w = 0, 0.5 and 1. Numbers give the percentage share of the global quota allocated to each region, summing to 100 for each piechart. Shares are calculated using Eq. (2) with emissions (f_j) averaged over last 5 years of data, and population (p_j) averaged over a 5-year period centred on the time at which world population reaches 9 billion. See SI Text 1 (Methods) for details.

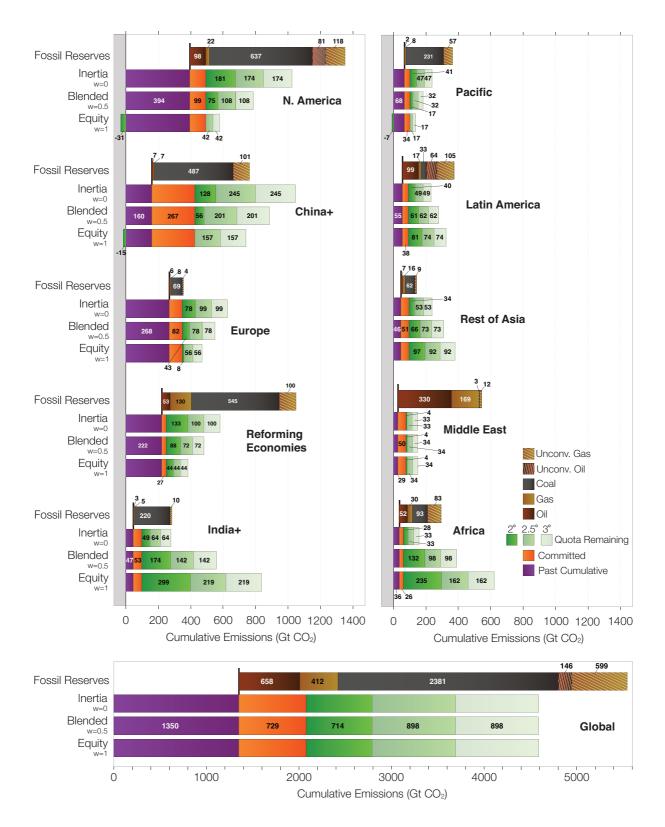


Figure 2: Quotas, cumulative committed emissions and fossil-fuel reserves. Past cumulative fossil-fuel CO₂ emissions (purple), future committed emissions^{42,44} (orange) and available fossil-fuel carbon quotas to meet warming limits of 2, 2.5 and 3 degrees with 50% probability (green), for 10 regions and the world, under inertia, blended and equity sharing principles. Stacked bars are cumulative; numbers give the contribution of each increment in GtCO₂. Negative increments are shown below the zero axis. Also shown are fossil-fuel reserves (coal, oil, gas, unconventional oil, unconventional gas)¹².

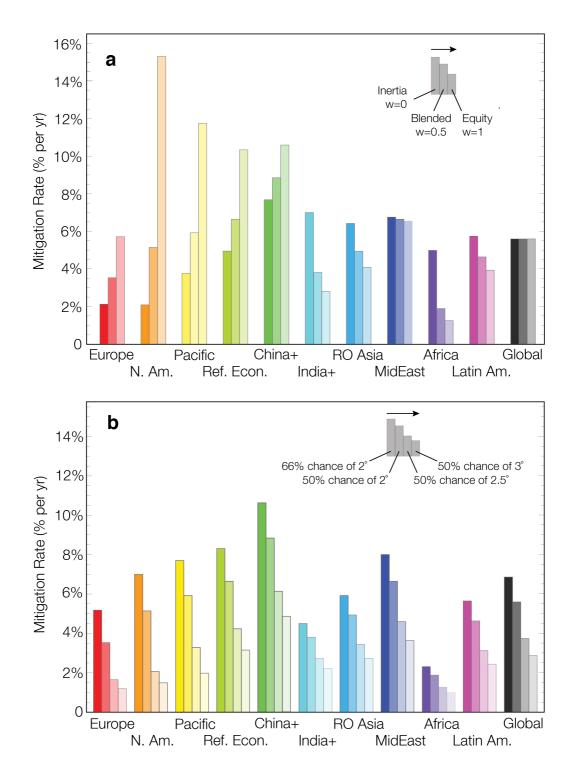


Figure 3: The dependence of the regional mitigation challenge on the sharing index (*w*) and the warming limit. Panel (a) shows mitigation rates for 10 regions and the world at w = 0, 0.5 and 1. Available global FFI carbon quota from 2013 is $Q^{\text{Avail}} = 1400 \text{ GtCO}_2$, corresponding to a 2-degree warming limit with 50% success probability. Panel (b) shows mitigation rates under a blended sharing principle (w = 0.5) in four cases with (warming limit, success probability) equal to (2 degrees, 50%), (2.5 degrees, 50%), (3 degrees, 50%), (2 degrees, 66%). The available global FFI carbon quotas for these four cases are $Q^{\text{Avail}} = 1400, 2300, 3200, 1100 \text{ GtCO}_2$, respectively¹⁰.

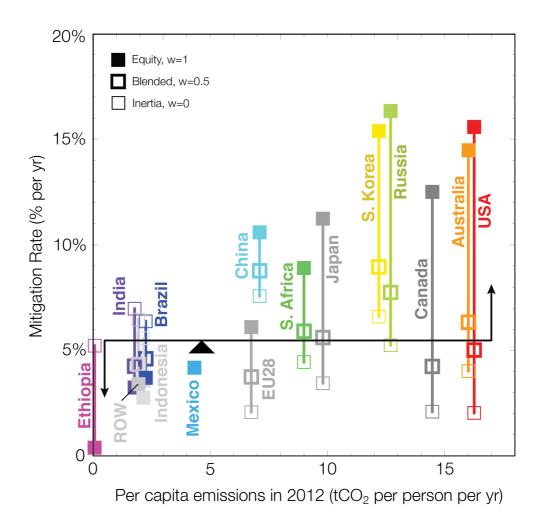


Figure 4: Distribution of the mitigation challenge among countries. Mitigation rates (*m*) for 14 countries and regions spanning the development spectrum and for the whole world, with sharing index w = 0 (open squares), w = 1 (filled squares) and w = 0.5 (half-open squares). Horizontal axis is 2012 per-capita fossil-fuel CO₂ emissions. Available global fossil-fuel carbon quota from 2013 is $Q^{\text{Avail}} = 1400 \text{ GtCO}_2$, corresponding to a 2-degree warming limit with 50% success probability. With increasing equity in the sharing principle, the mitigation challenge increases for countries to the right of the point for the world (the pivot for the see-saw) and decreases for countries to the left. Mexico is so close to the pivot that symbols are indistinguishable.

References

- 1 Allen, M. R. *et al.* Warming caused by cumulative carbon emissions: towards the trillionth tonne. *Nature* **458**, 1163-1166 (2009).
- 2 Meinshausen, M. *et al.* Greenhouse gas emission targets for limiting global warming to 2 degC. *Nature* **458**, 1158-1162 (2009).
- 3 Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. *Proceedings of the National Academy of Sciences of the United States of America* **106**, 16129-16134 (2009).
- 4 Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. *Nature* **459**, 829-833 (2009).
- 5 Raupach, M. R. *et al.* The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system. *Tellus Series B-Chemical and Physical Meteorology* **63**, 145-164 (2011).
- 6 Raupach, M. R. The exponential eigenmodes of the carbon-climate system, and their implications for ratios of responses to forcings. *Earth System Dynamics* **4**, 31-49, doi:doi: 10.5194/esd-4-31-2013 (2013).
- 7 European Commission. The 2C target: background on impacts, emission pathways, mitigation options and costs. 55 (European Commission, Brussels, Belgium, 2008).
- 8 Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner. Long-term Climate Change: Projections, Commitments and Irreversibility. in *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (ed T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley) Ch. 12, 1029-1136 (Cambridge University Press, 2013).
- 9 Matthews, H. D., Solomon, S. & Pierrehumbert, R. Cumulative carbon as a policy framework for achieving climate stabilization. *Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences* **370**, 4365-4379, doi:Doi 10.1098/Rsta.2012.0064 (2012).
- 10 Friedlingstein, P. *et al.* Persistent growth of CO2 emissions and implications for reaching climate targets. *Nature GeoScience* In press (2014).
- 11 GEA. Global Energy Assessment Toward a Sustainable Future. (2012).
- 12 BGR. Energy Study 2013: Reserves, resources and availability of energy resources. 112 (Federal Institute for Geosciences and Natural Resources (BGR), Hannover, 2013).
- 13 Clarke, L. *et al.* Assessing Transformation Pathways. in *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (eds O. Edenhofer *et al.*) Ch. 6, (Cambridge University Press, 2014).
- 14 Stavins, R. *et al.* International Cooperation: Agreements and Instruments. in *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (eds O. Edenhofer *et al.*) Ch. 13, (Cambridge University Press, 2014).
- 15 Höhne, N., den Elzen, M. G. J. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. *Climate Policy* **14**, 122-147 (2014).
- 16 Meyer, A. Contraction and Convergence. The global solution to climate change (Schumacher Briefings 5). (Green Books Ltd, 2000).

- 17 Hohmeyer, O. & Rennings, K. Man-made climate change: Economic aspects and policy considerations. (ZEW Economic Studies, Centre for European Economic Research, 1999).
- 18 Bows, A. & Anderson, K. Contraction and convergence: an assessment of the CCOptions model. *Climatic Change* **91**, 275-290 (2008).
- 19 Dellink, R. *et al.* Sharing the burden of financing adaptation to climate change. *Global Environmental Change* **19**, 411-421 (2009).
- 20 Bartsch, U. & Müller, B. Fossil Fuels in a Changing Climate Impacts of the Kyoto Protocol and Developing Country Participation. (Oxford University Press, 2000).
- 21 Füssel, H.-M. How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: A comprehensive indicator-based assessment. *Global Environmental Change* **20**, 597-611 (2010).
- 22 Ringius, L., Torvanger, A. & Underdal, A. Burden sharing and fairness principles in international climate policy. *International Environmental Agreements: Politics, Law and Economics* **2**, 1-22 (2002).
- 23 UNFCCC. Kyoto Protocol to the United Nations Framework Convention on Climate Change. (United Nations Framework Convention on Climate Change, Bonn, Germany, 1997).
- 24 Grasso, M. & Roberts, J. T. A compromise to break the climate impasse. *Nature Climate Change*, doi:DOI: 10.1038/NCLIMATE2259.
- European Climate Foundation. Taking stock the emission levels implied by the pledges to the Copenhagen Accord. (European Climate Foundation, 2010).
- 26 Den Elzen, M. G. J. *et al.* The Copenhagen Accord: abatement costs and carbon prices resulting from the submissions. *Environmental Science & Policy* **14**, 28-39 (2011).
- 27 Rogelj, J. *et al.* Analysis of the Copenhagen Accord pledges and its global climatic impacts-a snapshot of dissonant ambitions. *Environmental Research Letters* **5** (2010).
- 28 Rogelj, J. et al. Copenhagen Accord pledges are paltry. Nature 464, 1126-1128 (2010).
- 29 UNEP. The Emissions Gap Report 2013. (United Nations Environment Program, Nairobi, 2013).
- 30 Hardin, G. The tragedy of the commons. *Science* **162**, 1243-1248 (1968).
- 31 Kolstad, C. *et al.* Social, Economic, and Ethical Concepts and Methods. in *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (eds O. Edenhofer *et al.*) Ch. 3, (Cambridge University Press, 2014).
- 32 Ostrom, E. *Governing the commons: the evolution of institutions for collective action*. (Cambridge University Press, 1990).
- 33 Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. *Science* **302**, 1907-1912 (2003).
- 34 Lejano, R. P., Araral, E. & Araral, D. Interrogating the Commons: Introduction to the Special Issue. *Environmental Science & Policy* **36**, 1-7, doi:Doi 10.1016/J.Envsci.2013.07.007 (2014).
- 35 Pretty, J. Social capital and the collective management of resources. *Science* **302**, 1912-1914 (2003).
- 36 Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang. Anthropogenic and Natural Radiative Forcing. in *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to* the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed T.F. Stocker, D. Qin, G.-

K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley) Ch. 8, 659-740 (Cambridge University Press, 2013).

- 37 Le Quéré, C. *et al.* Global carbon budget 2013. *Earth Syst. Sci. Data* **6**, 235-263, doi:10.5194/essd-6-235-2014 (2014).
- 38 Gasser, T. & Ciais, P. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change". *Earth System Dynamics* **4**, 171-186, doi:Doi 10.5194/Esd-4-171-2013 (2013).
- 39 Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. *Nature Geoscience* **2**, 294-300, doi:Doi 10.1038/Ngeo473 (2009).
- 40 Berntsen, T. K. *et al.* Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials. *Tellus Series B-Chemical and Physical Meteorology* **57**, 283-304, doi:Doi 10.1111/J.1600-0889.2005.00152.X (2005).
- 41 Trudinger, C. M. & Enting, I. G. Comparison of formalisms for attributing responsibility for climate change: Non-linearities in the Brazilian proposal approach. *Climatic Change* **68**, 67-99 (2005).
- 42 Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. *Science* **329**, 1330-1333, doi:Doi 10.1126/Science.1188566 (2010).
- 43 Davis, S. J. & Socolow, R. H. Commitment accounting of CO2 emissions. *Environmental Research Letters* In Press (2014).
- 44 Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. *Proceedings of the National* Academy of Sciences of the United States of America **108**, 18554-18559 (2011).
- 45 van Vuuren, D. P. *et al.* The representative concentration pathways: an overview. *Climatic Change* **109**, 5-31 (2011).
- 46 Kriegler, E. *et al.* The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. *Climatic Change* Accepted for publication (2014).
- 47 Riahi, K. & Kriegler, E. Locked into Copenhagen Pledges Implications of short-term 386 emission targets for the cost and feasibility of long-term climate goals. *Technological Forecasting and Social Change* In review (2014).
- 48 Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, T. M. L. & Yohe, G. *Avoiding dangerous climate change*. (Cambridge University Press, 2006).
- 49 Den Elzen, M. G. J. *et al.* The Brazilian proposal and other options for international burden sharing: an evaluation of methodological and policy aspects using the FAIR model. 129 (National Institute of Publoic Health and the Environment, Bilthoven, The Netherlands, 1999).
- 50 Den Elzen, M. G. J., Schaeffer, M. & Lucas, P. L. Differentiating future commitments on the basis of countries' relative historical responsibility for climate change: Uncertainties in the 'Brazilian proposal' in the context of a policy implementation. *Climatic Change* **71**, 277-301 (2005).
- 51 Den Elzen, M. G. J., van Vuuren, D. P. & van Vliet, J. Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. *Climatic Change* **99**, 313-320 (2010).
- 52 Stocker, T. F. The Closing Door of Climate Targets. *Science* **339**, 280-282, doi:Doi 10.1126/Science.1232468 (2013).
- 53 Peters, G. P., Minx, J. C., Weber, C. L. & Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. *Proceedings of the National Academy of Sciences of the United States of America* **108**, 8903-8908 (2011).

- 54 Andres, R. J. *et al.* A synthesis of carbon dioxide emissions from fossil-fuel combustion. *Biogeosciences* **9**, 1845-1871 (2012).
- 55 Peters, G. P. & Hertwich, E. G. CO2 embodied in international trade with implications for global climate policy. *Environmental Science & Technology* **42**, 1401-1407 (2008).
- 56 Hertwich, E. G. & Peters, G. P. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environmental Science & Technology **43**, 6414-6420 (2009).
- 57 Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. *Proceedings of the National Academy of Sciences of the United States of America* **107**, 5687-5692, doi:Doi 10.1073/Pnas.0906974107 (2010).
- 58 Peters, G. P. *et al.* Rapid growth in CO2 emissions after the 2008-2009 Global Financial Crisis. *Nature Climate Change* **2**, 2-4, doi:10.1038/nclimate1332 (2011).
- 59 Azar, C., Lindgren, K., Larson, E. & Mollersten, K. Carbon capture and storage from fossil fuels and biomass -Costs and potential role in stabilizing the atmosphere. *Climatic Change* 74, 47-79, doi:Doi 10.1007/S10584-005-3484-7 (2006).
- 60 van Vuuren, D. P. & Riahi, K. The relationship between short-term emissions and long-term concentration targets. *Climatic Change* **104**, 793-801, doi:Doi 10.1007/S10584-010-0004-6 (2011).
- 61 Garnaut, R. Garnaut Climate Change Review: Final Report. 634 (Cambridge University Press, Melbourne, Australia, 2008).
- 62 Garnaut, R. *The Garnaut Review 2011: Australia in the Global Response to Climate Change*. (Cambridge University Press, 2011).