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ABSTRACT

Regional climate models (RCMs) are the primary source of high-resolution climate projections, and it is of

crucial importance to evaluate their ability to simulate extreme events under current climate conditions. Many

extreme events are influenced by circulation features that occur outside, or on the edges of, RCMdomains. Thus,

it is of interest to knowwhether such dynamically controlled aspects of extremes are well represented by RCMs.

This study assesses the relationship between upstream blocking and cold temperature extremes over North

America in observations, reanalysis products (ERA-Interim and NARR), and RCMs (CanRCM4, CRCM5,

HIRHAM5, and RCA4). Generalized extreme value distributions were fitted to winter minimum temperature

(TNn) incorporating blocking frequency (BF) as a covariate, which is shown to have a significant influence on

TNn. The magnitude of blocking influence in the RCMs is consistent with observations, but the spatial extent

varies. CRCM5 and HIRHAM5 reproduce the pattern of influence best compared to observations. CanRCM4

and RCA4 capture the influence of blocking in British Columbia and the northeastern United States, but the

extension of influence that is seen in observations and reanalysis into the southern United States is not evident.

The difference in the 20-yr return value (20RV) of TNn between high and low BF in the Pacific Ocean indicates

that blocking is associatedwith a decrease of up to 158C in the 20RVover themajority of theUnited States and in

western Canada. In northern NorthAmerica the difference in the 20RV is positive as blocking is associatedwith

warmer extreme cold temperatures. The 20RVs are generally simulated well by the RCMs.

1. Introduction

Extreme events have large impacts on both human

and natural systems. It is important to understand large-

scale circulation features that are associated with climate

extremes and how well these relationships are simulated

by climatemodels. It is often argued that regional climate

models (RCMs) add value to lower-resolution global

climate simulations by more skillfully representing ex-

tremes. The evaluation of relationships between ex-

tremes and circulation features is particularly interesting

in RCMs because these circulation features can be lo-

cated outside or near the edge of the model’s domain.

The relationship between these external circulation fea-

tures and extremes allows us to evaluate how well the

RCMs simulate these dynamically controlled aspects.

It is well established that atmospheric blocking, a

disruption of the prevailing westerly flow, is associated

with anomalous warm and cool temperatures. Atmo-

spheric blocking in the North Pacific has both local

(Pfahl and Wernli 2012) and downstream (Carrera et al.

2004; Favre and Gershunov 2006; Casola and Wallace

2007) impacts on North American temperatures, asso-

ciated with either changes in the radiative balance or

cold air advection, respectively (Pfahl andWernli 2012).

Warm extremes are associated with collocated blocking

events, while blocking has an influence on remote cold

minimum temperature anomalies (Carrera et al. 2004;

Favre and Gershunov 2006; Casola and Wallace 2007;

Pfahl and Wernli 2012). For example, blocking in the
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Alaskan region is associated with warmer temperatures

in western Alaska but a shift to cooler mean and extreme

surface temperatures from Yukon to the Great Plains

(Carrera et al. 2004). Furthermore, increased cyclonic

activity in the northeast Pacific is associated with fewer

Arctic air advections and fewer cold and extreme cold

days in western North America, although the sign of the

relationship changes into Mexico (Favre and Gershunov

2006). Alaskan ridging is associated with significantly

more extreme cold days over much of the western and

southern regions of the United States (Casola and

Wallace 2007).

Previous research into the relationship between

blocking and extremes used percentile-based definitions

of extremes (Carrera et al. 2004; Favre and Gershunov

2006; Casola and Wallace 2007; Pfahl and Wernli 2012).

The use of extreme value statistics is another approach

that can be used to study statistically extreme events

(Coles 2001). An extreme value framework has been

used to study changes in extreme temperature (Bonsal

et al. 2001;Wang et al. 2013) andprecipitation (DeGaetano

2009; Whan and Zwiers 2016b) in North America. Non-

stationarymodels have been used to examine the influence

of covariates (such as blocking or soilmoisture) on extreme

temperature in Europe (Sillmann et al. 2011; Whan et al.

2015). In North America, a nonstationary generalized ex-

treme value (GEV) framework has been used to explore

the relationship between heat waves in Florida and indices

of El Niño–Southern Oscillation (Keellings and Waylen

2015). To date, a GEV method has not been used to ex-

amine the relationship between blocking and temperature

extremes in North America, and the need for further re-

search in this area has been noted (Grotjahn et al. 2016).

However, in Europe, nonstationary GEV distributions

have been used to demonstrate the influence of Atlantic

blocking on minimum temperatures in observations and

global climate models (Sillmann et al. 2011) and the influ-

ence of the North Atlantic Oscillation and atmospheric

blocking on hot spells (Photiadou et al. 2014).

There is high uncertainty about projected circulation

changes (Shepherd 2014), so it is important to un-

derstand relationships between circulation patterns and

temperature extremes in the current climate. Increased

understanding of the observed relationships and the

ability of models to simulate these relationships can in-

crease certainty that projected changes have a physical

basis and are not the result of model errors or biases.

As such, it is also important to understand how well

RCMs can simulate the observed relationship between

atmospheric blocking and minimum temperature ex-

tremes in North America. We use a suite of RCMs from

the Coordinated Regional Climate Downscaling Ex-

periment (CORDEX) (Giorgi et al. 2009) that use

surface and lateral boundary conditions derived from

ERA-Interim (Diaconescu et al. 2015; Dee et al. 2011).

The ability of RCMs to simulate circulation features can

vary greatly (Li et al. 2015). A suite of RCMs in Europe

was able to reproduce the pattern of the surface tem-

perature response to Atlantic blocking, although the

magnitude of the anomalies varied between models

(Tourpali and Zanis 2013). Extreme value theory can be

used to evaluate climate models by comparing the pa-

rameters of theGEVdistribution between observed and

modeled datasets (Casati and de Elía 2014). Here we

evaluate the relationship between minimum tempera-

ture and blocking in four CORDEX generation RCMs

using nonstationary GEV distributions.

2. Data and methods

a. Data

We focus on the monthly minima of daily minimum

temperature (TNn) in North America over the winter

[December–February (DJF)] months in 1989–2009. We

use three observationally based products: one called

ANUSPLIN1Livneh (McKenney et al. 2011; Livneh

et al. 2013), ERA-Interim, and the North American Re-

gional Reanalysis (NARR; Mesinger et al. 2006). The

ANUSPLIN1Livneh dataset combines two high-

resolution gridded datasets based on stations from

Canada (McKenney et al. 2011) and the continental

United States (Livneh et al. 2013). It should be noted

that uncertainty in ANUSPLIN1Livneh is higher in

regions where observations are sparse. See Whan and

Zwiers (2016) for more details on this combined dataset.

Surface temperature in reanalysis products is influenced

directly by both observations and the model, so it is

classified as a ‘‘type B’’ variable by Kalnay et al. (1996).

As such, caution is required when interpreting surface

temperature from the reanalysis products.

The observationally based datasets are comparedwith

seven RCM simulations: the CCCma Regional Climate

Model, version 4 (CanRCM4) and three variants of it

(defined below), called CanRCM4noSN, CanRCM4022,

and CanRCM4NCEP; as well as CRCM version 5

(CRCM5), RCA version 4 (RCA4), and HIRHAM

version 5 (HIRHAM5). (Expansions are available

online at http://www.ametsoc.org/PubsAcronymList.) A

summary of information about the observed and mod-

eled datasets can be found in Table 1. The RCM simu-

lations have a common horizontal resolution (0.448)
on a rotated-pole grid (centered on 42.58N, 83.08W)

and use lateral boundary conditions sourced from

ERA-Interim, with two exceptions. One CanRCM4

simulation (CanRCM4022) has a higher horizontal

resolution (0.228), and another CanRCM4 simulation
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(CanRCM4NCEP) has lateral boundary conditions de-

rived from NCEP-2 (Kanamitsu et al. 2002). CanRCM4

(Scinocca et al. 2016) is run with spectral nudging for

large scales, except for one version that has a free in-

terior (CanRCM4noSN). CanRCM4 and CRCM5

(Zadra et al. 2008) are two Canadian RCMs that share

the same dynamical core but with different physics

schemes and different versions of the same land surface

scheme, the Canadian Land Surface Scheme (CLASS;

Verseghy 1991). Information about model physics can

be seen in Table 2, and for further details on the dif-

ferences among models see Scinocca et al. (2016) for

CanRCM4, Zadra et al. (2008) for CRCM5, Samuelsson

et al. (2011) for RCA4, and Christensen et al. (2006) for

HIRHAM5.

Preprocessing of all datasets included the removal of

ocean-based points (where required) and interpolation

to the CanRCM4 0.448 rotated-pole grid, using bilinear

interpolation from the climate data operators (Max

Planck Institute 2013). While all CORDEX generation

models use the same rotated-pole grid, the original di-

mensions of CRCM5 and the higher-resolution simula-

tion (CanRCM4022) are larger than the final CanRCM4

grid (Table 1).

b. Methods

1) BLOCKING INDEX

Atmospheric blocking refers to a disruption of the

prevailing westerly flow that is often associated with per-

sistent ridging (Renwick and Wallace 1996; Rex 1950).

Blocking occurs at high latitudes in the northeast Atlantic

(2708–908E) and Pacific (1008–2408E) Oceans, generally

between 508 and 608N in the Atlantic and between 608
and 708N in the Pacific (Barriopedro et al. 2006). Atlantic

blocking is prominent throughout the year, while for the

Pacific sector blocking frequency is largest in winter

(Cheung et al. 2013).

Atmospheric blocking is characterized in this study

as per Tibaldi and Molteni (1990). The daily one-

dimensional Tibaldi and Molteni (1990) index (TM90)

classifies longitudes as either blocked or not blocked using

midtroposphere meridional pressure gradients south

[GHGS; Eq. (1)] and north [GHGN; Eq. (2)] of a central

reference latitude (e.g., FO 5 608N). The GHGS is a

measure of the zonal flow intensity at each longitude,

and inclusion of the GHGN is required to exclude some

nonblocked flows defined with only the GHGS

(Barriopedro et al. 2006). Nonblocked flows occur when

geopotential heights are lower at the central latitude

compared to lower latitudes. In contrast, high geo-

potential heights at the central latitude compared to

lower latitudes are indicative of a blocked flow. The

gradients are defined as
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For the central latitudes we use FO 5 608N 6 d, the

southern latitudes are FS 5 408N 6 d, and the northern

latitudes are FN 5 808N 6 d, where d 5 58, 08, 258.
These central reference latitudes have been used pre-

viously in global studies examining both Pacific and

Atlantic blocking events. We calculate the GHGS and

GHGN separately for three values of d at each longitude

from the five-day mean 500-hPa geopotential height Z

of ERA-Interim (the RCMs’ driving product). Use of

five-day mean geopotential height anomalies ensures

blocking events are of a sufficient length. These values of

F are consistent with previous studies (Tibaldi and

Molteni 1990; Shabbar et al. 2001), while other studies

use small variations on these values (Barriopedro et al.

2006). At each time step, a given longitude is classified as

blocked when, for at least one of the three values of d,

TABLE 1. Details of observations, reanalysis products, and regional climate models. The institutes used are the Canadian Centre for

Climate Modelling and Analysis (CCCma), the Université du Québec à Montréal (UQAM), the Canadian Forest Service (CFS), the

National Centers for Environmental Prediction (NCEP), the University of Washington (UoW), the Danish Meteorological Institute

(DMI), and the Swedish Meteorological and Hydrological Institute (SMHI).

Institute Original resolution (8) Original dimensions (x, y)

ANUSPLIN1Livneh CFS and UoW 0.08 1068,701

ERA-Interim ECMWF 0.75 480, 241

NARR NCEP 0.30 349, 277

CanRCM4 CCCma 0.44 155, 130

CanRCM4noSN CCCma 0.44 155, 130

CanRCM4022 CCCma 0.22 310, 260

CanRCM4NCEP CCCma 0.44 155, 130

CRCM5 UQAM 0.44 172, 160

HIRHAM5 DMI 0.44 155, 130

RCA4 SMHI 0.44 155, 130
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GHGS . 0 and GHGN , 210 meters per degree lati-

tude. These thresholds are consistent across many

studies (Tibaldi and Molteni 1990; Shabbar et al. 2001;

Barriopedro et al. 2006; Diao et al. 2006).

We focus on blocking events occurring in the north-

eastern Pacific Ocean (EP; 1608E–1108W; Fig. 1a). We

characterize blocking in this sector by an index of

blocking frequency (BF), which is the percentage of

days per month when any longitudes in the EP sector are

classified as blocked. A BF of 10% in a 31-day month

equates to approximately 3 blocked days, although it

does not ensure that blocked days are consecutive.

The monthly winter BF is 20% and the standard de-

viation is 20%. The mean winter BF at each longitude in

ERA-Interim is generally consistent with previous def-

initions based on NCEP–NCAR reanalysis (Kalnay

et al. 1996; Barriopedro et al. 2006), with the preferred

blocking locations centered in the Atlantic and Pacific

Oceans (Fig. 1b). The time series of winter mean BF

(Fig. 1c) shows no significant trend over the relatively

short study period.

Examples from two months that have high (Fig. 2a)

and low (Fig. 2b) BF in the EP sector shows the typical

flow and geopotential height anomalies under these two

regimes. Under a nonblocked regime the positive geo-

potential height anomaly is located in the central Pacific

midlatitudes with a westerly flow dominant over the

majority of North America. When the EP sector is

blocked, a positive geopotential height anomaly is located

over the Alaskan region, which is associated with north-

erly flow over western Canada and the United States ex-

tending to around 358N.

It is worthmentioning some of the shortcomings of the

TM90 index. It has been noted that the use of the same

reference latitudes throughout the hemisphere does

not realistically reflect the spatial variability in the jet

stream (Barriopedro et al. 2010). Furthermore, the one-

dimensional nature of the index means it does not ac-

count for the extension and spatiotemporal propagation

of blocking events (Barriopedro et al. 2010). Accord-

ingly, other blocking indices have been developed in an

attempt to overcome these limitations, such as the two-

dimensional extension of the TM90 index (Scherrer

et al. 2006). This two-dimensional TM90 index is cal-

culated in a similar manner to the one-dimensional

index, except that the central latitude is allowed to

vary between 358 and 758N in 2.58 increments, with the

geopotential height gradients calculated over 158 bands
north and south from the central latitude. As we allow

three central latitudes from 558 to 658N, the index used

here can be thought of as a subset of the full two-

dimensional TM90 index that focuses only on the up-

streamAlaskan blocking events that have been linked to

minimum temperature extremes in previous work (e.g.,

Carrera et al. 2004). As a robustness check we repeated

the analysis using a version of the two-dimensional index

that was focused on the high latitudes in the northeast-

ern Pacific. Results are largely similar for the majority

of the continent, so we have chosen to use the more

simple one-dimensional index.

2) GENERALIZED EXTREME VALUE ANALYSIS

The relationship between BF and minimum temper-

ature in DJF is evaluated using extreme value theory

(Coles 2001). The GEV distribution is used to model

block maxima and can be described by three parame-

ters: the location m, which is similar to the mean; the

scale s, which is a measure of variability; and the shape

j, which describes which distribution the data fit. De-

pending on j, the data fit one of the following distribu-

tions: theGumbel if j5 0; the Frechet if j. 0, which has

an unbounded tail on the right; or the Weibull if j , 0,

which is bounded above. First the GEV distribution was

fitted by the maximum likelihood method to the nega-

tive of DJF monthly TNn without covariates (M0).

Next, the influence of BF on TNn is quantified by the

inclusion of a covariate in the nonstationary GEV

models. The covariate (BF, designated z) is included on

TABLE 2. The physical parameterization schemes for each of the RCMs.

Convection Radiation Microphysics Planetary boundary layer

CanRCM4 Zhang and

McFarlane (1995) and

von Salzen et al. (2005)

Li and Barker (2005),

Barker et al. (2008),

and von Salzen et al.

(2005)

Lohmann and Roeckner

(1996), Rotstayn (1997),

and Khairoutdinov and

Kogan (2000)

Abdella and McFarlane

(1997)

CRCM5 Kain and Fritsch

(1990) and Kuo (1965)

Li and Barker (2005) Sundqvist Berge et al.

(1989)

Benoit et al. (1989) and

Delage and Girard

(1992)

HIRHAM5 Tiedtke (1989) Fouquart and Bonnel

(1980)

Tiedtke (1989) and

Tompkins (2002)

Samuelsson et al. (2011)

RCA4 Kain and Fritsch

(1990, 1993)

Savijärvi (1990) and
Sass et al. (1994)

Rasch and Kristjánsson
(1998)

Cuxart et al. (2000)
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either the location parameterM1 or on both the location

and scale parameters M2. Where a covariate is in-

cluded on the location parameter, it varies linearly with

the covariate so thatm(z)5 b01 b1z. Where a covariate

is included on the scale parameter, it is allowed to vary

log-linearly with the covariate to ensure the scale pa-

rameter remains positive, so that log(s)5 g0 1 g1z. We

assume that the shape parameter is constant and does

not vary with the covariate. The slope of the covariate

gives an indication of the magnitude of the influence

per unit of the covariate, in this case per 1% change in

blocking. Results are presented in terms of a 10%

change in blocking frequency. After fitting the GEV to

the negative of TNn, the sign of the location parameter

m and thus the coefficient on the covariate b1 are re-

versed so the results can be presented in physically

consistent values. The fit of the GEV (M2) to winter

TNn in North America is tested with the application of

a standard Kolmogorov–Smirnov goodness-of-fit (KS)

test at the p , 0.05 significance level. In the non-

stationary model, the KS test is applied to data that are

first transformed to a standard Gumbel distribution,

conditional on the fitted parameter values (Coles 2001;

Zhang et al. 2010).

The likelihood-ratio test (LRT) is used to evaluate

whether the introduction of covariates have a significant

influence. The LRT compares nested GEV models (i.e.,

M1 is M2 with g1 set to zero and M0 is M1 with b1 set

FIG. 1. (a) Five-day mean geopotential height anomalies (m) from ERA-Interim on days where any longitudes in

EP sector (marked with dashed lines) are blocked. (b) Mean blocking frequency by longitude for winter months

(1989–2009); dashed lines indicate the EP sector. (c) The time series of monthly winter (DJF with the year marker

indicating January and other months excluded) blocking showing the percentage of days per month when any lon-

gitudes in the northeastern Pacific are blocked. Horizontal lines in (c) show the 90th and 50th percentiles of BF.
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to zero). The LRT uses a test statistic [Eq. (3)] to com-

pare the log likelihood of two nested models where, for

example, l0 is the log likelihood of M0 and l1 is the log

likelihood of M2:

T5 2(l1 2 l 0) . (3)

The statistic T is asymptotically x2
q distributed with q

degrees of freedom, where q is the difference in the

number of free parameters between the models (in the

example given, q5 2). Themore simple model is rejected

at significance level a ifT is larger than the 12 a quantile

of the x2
q distribution (Zhang et al. 2010; Sillmann et al.

2011). We compare M0 with M2 to find where BF has a

significant influence on minimum temperature. Then, for

locations where the influence of the covariate is signifi-

cant, we compare M1 with M2 to describe where BF sig-

nificantly alters both the location and scale parameters.

GEV parameters are averaged on a regional basis.

The effective 20-yr return values (20RVs) are a cold

temperature event that we expect to occur with a

probability of 0.05 or 1/20 years, given a particular value

of the covariate (e.g., low or high BF). These are calcu-

lated at each pixel. One thousand random draws from

GEV distributions with these regionally averaged GEV

parameters adjusted for no blocking and average (50th

percentile) and high (90th percentile) BF are used to

reproduce TNn probability density function distributions.

All analysis is conducted in the R statistical comput-

ing environment (R Development Core Team 2014),

and the GEV analysis uses the extRemes package

(Gilleland 2014).

3. Results

a. Observed influence of eastern Pacific blocking on
TNn

Observed (ANUSPLIN1Livneh, ERA-Interim, and

NARR) monthly winter TNn minima fit the GEV dis-

tribution well across most of North America (Figs. 3a–

c). The percentage of pixels failing the KS test is smaller

than the expected 5%, with values between 5% in ERA-

Interim and 10% in ANUSPLIN1Livneh and NARR.

Most of these pixels are located in central and eastern

Canada in areas where in situ observations are sparse.

Blocking has a significant influence on North American

TNn, as the nonstationarymodel (M2) is selected overmost

of the continent (Figs. 3a–c). The observed datasets gen-

erally agree on the areas under the influence of blocking. In

the southwestern United States and northeastern Canada,

the inclusion of the covariate on the scale parameter sig-

nificantly improves thefit of theGEV; however, there is less

agreement between observationally based datasets on the

extent of this influence, particularly in northeastern Can-

ada. In ANUSPLIN1Livneh and ERA-Interim there are

FIG. 2. Vector wind (m s21; arrows) and 500-hPa geopotential height anomalies (m; colors) in composite average

months with (a) BF greater than one standard deviation above the mean (high BF) and (b) BF greater than one

standard deviation below the mean (low BF).
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FIG. 3. Results of the likelihood ratio test showing where BF has a significant influence on

minimum temperature (light and dark blue) and where blocking significantly influences both

the location and scale parameters (dark blue) in (a) ANUSPLIN1Livneh, (b) ERA-Interim,

(c) NARR, (d) CRCM5, (e) CanRCM4, (f) CanRCM4noSN, (g) CanRCM4NCEP,

(h) CanRCM4022, (i) HIRHAM5, and ( j) RCA4. Locations where the KS test showed the

GEV is not a good fit for winter monthly TNn are indicated with dark gray dots.
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large homogeneous regions in the northeast where the scale

parameter appears to be influenced by blocking, while in

NARR this region is more fragmented (Figs. 3a–c).

The slope of the covariate on the location parameter

indicates that a higher BF is associated with lower

minimum temperatures across most of the continent,

excluding the southwest (Figs. 4a–c). Blocking is asso-

ciated with increased TNn variability in the south, par-

ticularly in the southwest, and decreased variability in

the north (Figs. 5a–c). The pattern of blocking influence

on the scale parameter does not match exactly to that of

the location parameter, particularly in eastern North

America. In the southeast United States, for example,

increased blocking is associated with lower tempera-

tures and more variability in minimum temperatures. In

contrast, in western Canada increased blocking is asso-

ciated with both lower temperature and less variability.

Based on these patterns, three regions are defined for

further analysis. In RegPP and RegNN, blocking has

a positive (RegPP) or negative (RegNN) influence on

both parameters, while in RegNP blocking has a nega-

tive influence on the location parameter and the influ-

ence on the scale parameter is mixed (Fig. 4a).

On the continental scale, there is good agreement be-

tween the GEV parameters in ERA-Interim and NARR

with ANUSPLIN1Livneh (Fig. 6). The spatial correla-

tion of the location parameters in the reanalysis products

and observations is high (r . 0.9), and the amplitudes of

the variations in all parameters are reasonably well

matched to observations. The influence of blocking on

the location parameter is larger in ERA-Interim and

NARR compared to observations, while the blocking

influence on the scale parameter is more realistic (Fig. 6).

Regionally averaged GEV parameters demonstrate

biases in the location parameter m between the obser-

vationally based datasets of up to 68C inRegNNandRegPP

(Tables 3 and 4) and 48C in RegNP (Table 5). The re-

analysis products are warmer thanANUSPLIN1Livneh in

all regions, although the cause of this difference re-

mains unresolved. Previous comparison of the coldest

day of the year also found widespread warm bias in

NARR and ERA-Interim (Whan and Zwiers 2016a).

However, there is agreement between observationally

based datasets on the regionally averaged scale pa-

rameter s and on the slope of the covariates b1 and g1.

In RegNN, blocking is associated with up to a 1.128C
decrease in TNn per 10% change in BF. The positive

influence of blocking on the location parameter in

RegPP is smaller, a 0.348C increase in TNn for

ANUSPLIN1Livneh and reanalysis products (Table 4).

In RegNP increased blocking is associated with a de-

crease in the location parameter in all datasets (up

to 20.98C in NARR).

Averaged over RegNN, the negative influence of block-

ing on the scale parameter g1 is small but significantly dif-

ferent than zero, at20.258 to20.338C (Table 3). In RegPP

there is a positive influence of blocking on TNn variability.

On average, blocking is associated with a 0.418C increase in

the variability of TNn per 10% increase in BF. In RegNP,

there is a 20.158–0.098C change in g1 per 10% change in

BF, with a negative slope in ANUSPLIN1Livneh, an in-

significant positive slope in ERA-Interim and a significant

positive slope in NARR (Table 5).

The influence of blocking can be seen clearly in thePDFs

of TNn reconstructed from regionally averaged GEV pa-

rameters (Figs. 7, 8, and 9). In RegNN TNn is well sepa-

rated according to blocking regime.Most of this separation

occurs in the warmer part of the distribution, so that tem-

peratures above 2158C are rarely experienced under a

high blocking regime. The separation of distributions ac-

cording to blocking regime is less consistent in RegNP

(Fig. 8). In all datasets the cold tail of the distribution is well

separated by blocking regime, although NARR has the

largest differences. The influence of the scale parameter is

evident, as the distribution of ANUSPLIN1Livneh under

high blocking is narrower and well separated on the

warm tail, while the reanalysis products are wider with

little separation at the warm tail. The influence of

blocking on the variability of RegPP TNn can be seen in

Fig. 9. Under a high blocking regime, the distribution is

much wider with a higher probability of TNn values

greater than 08C, while when there is no blocking the

distribution of TNn in RegPP is narrow with a low

probability of TNn greater than 08C (Fig. 9).

The difference in the 20-yr return values between high

(90th percentile) and low (10th percentile) blocking

regimes shows the influence that blocking has on ex-

treme cold events. These return values combine the

previous information, are informative from a user per-

spective, and show the regions where blocking has the

largest influence (Fig. 10). Over the continental United

States high blocking generally has a negative influence

on TNn. On the continental scale there is good agree-

ment in the 20RV between reanalysis products and

ANUSPLIN1Livneh as the spatial correlation is mod-

erately large (r . 0.6), the overall bias is small (,48C),
and the amplitude of the variations is realistic (Fig. 6). In

all observationally based datasets high blocking is as-

sociated with up to a 158C decrease in TNn, compared

to low blocking. The negative difference in return values

in the southwest, despite a positive slope in the covariate

on the location parameter, is due to the influence of the

scale parameter and the increased variability under a

blocking regime. The regions with the largest differ-

ences in 20RV between blocking regimes are cen-

tered around the Pacific Northwest and central United
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FIG. 4. The slope of the covariate on the location parameter (degrees Celsius per 10% change in BF) fromM2 in

(a) ANUSPLIN1Livneh, (b) ERA-Interim, (c) NARR, (d) CRCM5, (e) CanRCM4, (f) CanRCM4noSN,

(g) CanRCM4NCEP, (h) CanRCM4022, (i) HIRHAM5, and ( j) RCA4. Pixels where the GEV is not a good fit for

winter TNn aremarked in gray. Regions of positive (RegPP), negative (RegNN), andmixed (RegNP) influence are

outlined.
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FIG. 5. The slope of the log-transformed scale parameter (degrees Celsius per 10% change in BF) from M2 in

(a) ANUSPLIN1Livneh, (b) ERA-Interim, (c) NARR, (d) CRCM5, (e) CanRCM4, (f) CanRCM4noSN,

(g) CanRCM4NCEP, (h) CanRCM4022, (i) HIRHAM5, and ( j) RCA4. Pixels where the GEV is not a good fit for

winter TNn are marked in gray.
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States, although again the reanalysis products have a

much more spatially coherent signal compared to

ANUSPLIN1Livneh. There is a change of sign in

western Alaska and Mexico as differences in the 20-yr

return level between high and low BF are positive, in-

dicating that blocking is associated withwarmer extreme

cold temperatures in these regions.

b. Evaluation of regional climate model simulations

The fit of the GEV to winter TNn in the RCMs is gen-

erally consistent with observations, as themajority of pixels

failing the KS test are located in central Canada (Fig. 3).

Furthermore, the percentage of pixels failing the KS test is

comparable to observed, as between 3% and 9% of pixels

are not a good fit. Compared to the observationally based

datasets, all simulations except HIRHAM5 have an addi-

tional region failing the KS test in the southeast United

States along the Gulf of Mexico. RCA4 has the largest

percentage (9%) of land areawhere theGEV is not a good

fit, with most of these points located in southern-central

Canada and the southeast United States (Fig. 3j). It should

be noted that these rejection rates are consistent with the

significance level (i.e., the expected rate of false rejections

when the GEV fits well) that was specified for the KS test.

Also, to the extent that TNn exhibits spatially organized

behavior, it is not unexpected that the rejection of the null

hypothesis that theGEVfitswell should occur in a spatially

organized manner.

The pattern of blocking influence on TNn in the

RCMs is generally consistent with the observed datasets

(Fig. 3). Only HIRHAM5 and CRCM5 capture the ex-

tension of blocking influence on the location and scale

parameters in the southwest, although HIRHAM5 does

not capture the significant influence in western Canada

(Fig. 3). All CanRCM4 simulations simulate the signif-

icant influence of blocking extending from British Co-

lumbia into the United States but do not simulate the

extension of influence to the south and underestimate

FIG. 6. Taylor diagrams showing the standard deviation (blue arcs), the root-mean-square error (green arcs), and the correlation (black

outer arc) of (a) the location parameter, (b) the slope of the covariate on the location parameter, (c) the scale parameter, (d) the slope of

the log-transformed scale parameter, (e) the shape parameter, and (f) the difference in 20RV between high and low blocking regimes, in

reanalysis products (NARR 5 black cross, and ERA-Interim 5 black circle) and RCMs (CanRCM4 5 red circle, CanRCM4noSN 5
orange cross, CanRCM40225 red cross, CanRCM4NCEP5 orange circle, CRCM55 blue circle, RCA45 green circle, and HIRHAM55
purple circle) compared to ANUSPLIN1Livneh.
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the influence of blocking on the TNn variability in

southwestern North America (Figs. 3e,f). This indicates

that the inability of the model to simulate the significant

influence of blocking on TNn does not stem from the

nesting strategy, lateral boundary conditions, or horizon-

tal resolution and is instead likely related to the physics

packages used in the RCM. In RCA4, BF has a significant

influence on both the location and scale parameters in the

southeast United States, which is not evident in the ob-

servations, and it does not simulate the significant influ-

ence of blocking in southwestern North America (Fig. 3j).

On the continental scale the RCMs simulate the lo-

cation, scale, and shape parameters well compared to

ANUSPLIN1Livneh (Fig. 6). Some instances where

one or moremodels stand out from the others are noted.

The RMSE in all GEV parameters in RCA4 compared

to observations is larger than most other products. The

amplitude of variations in the influence of blocking on

the location parameter in CanRCM4 is somewhat larger

than observed and more similar to the reanalysis prod-

ucts. The spatial correlation between the blocking

influence on the scale parameter in HIRHAM5 and

ANUSPLIN1Livneh is high and similar to that of

ERA-Interim and ANUSPLIN1Livneh (Fig. 6).

In RegNN and RegPP, the estimated location pa-

rameter is replicated well in the RCMs compared to

observationally based datasets (Fig. 4). In RegNN,

CRCM5 and the CanRCM4 simulations have a similar

location parameter to ANUSPLIN1Livneh, although

CanRCM4NCEP is 18C cooler than observations and

the other simulations are around 18C warmer. Previous

work has shown that there are significant biases in

CanRCM4 annual TNn compared to ANUSPLIN1Livneh,

with significantly cooler temperatures in the Pacific North-

west and warmer temperatures east of the mountains in

central Canada (Whan and Zwiers 2016a). The similarity

between CanRCM4 simulations and observations here is

likely due to the averaging of the positive and negative

biases in each half of RegNN. The location parameters

for HIRHAM5 and RCA4 in RegNN are more similar to

reanalysis products (Table 3). In RegPP, all CanRCM4

simulations have a similar location parameter to observa-

tions, although somewhat cooler, consistent with the cool

bias in annual TNn in the southwestern United States

(Whan and Zwiers 2016a). CRCM5, HIRHAM5, and

RCA4 are similar to reanalysis products with a warm bias

compared to ANUSPLIN1Livneh (Table 4). In RegNP,

all RCMs are warmer than ANUSPLIN1Livneh. The

CanRCM4 and CRCM5 simulations are similar to re-

analysis products, while HIRHAM5 and RCA4 have

the largest warm bias, up to 88C in RCA4.

In RegNN, the average influence of BF on the loca-

tion parameter in the RCMs is similar to observed,

as blocking results in a 0.918–1.188C decrease in TNn per

10% increase in BF. Two models run without spectral

nudging, CRCM5 and CanRCM4noSN, which over- and

underestimate the strength of the blocking influence, re-

spectively, while HIRHAM5 also slightly underestimates

the relationship (Table 3). In RegPP, the influence of

blocking on the location parameter is somewhat larger

than observed in CanRCM4, CanRCM4noSN, and

CRCM5 but smaller than observed in CanRCM4NCEP,

HIRHAM5, and RCA4. The influence of blocking on

the location parameter in RegNP is too strong compared

to all observationally based datasets in CanRCM4,

CanRCM4NCEP, and CRCM5.

Similar to the observationally based datasets, in

RegNN the influence of blocking on the scale parameter

is small but significant in all simulations (Table 3).

In RegPP, all RCMs simulate the significant positive

influenceof blockingon the scale parameter. InCanRCM4,

CRCM5, and RCA4 blocking is associated with a 0.318–
0.48C increase in TNn variability per 10% increase in BF,

comparable to observations. In HIRHAM5 the influence

of blocking on the scale parameter is too large, with a

0.558C increase in TNn variability per 10% increase in BF

(Table 4). The mixed signal in the sign of the covariate on

the scale parameter in RegNP is also seen in the RCMs

TABLE 3. Regionally averaged GEV parameters in RegNN from M2 where a nonstationary model was selected as the best model.

Confidence intervals from a single-sample t test (p , 0.05) are noted in parentheses.

m b1 s g1

ANUSPLIN1Livneh 226.9 (227.43, 226.36) 21.02 (21.07, 20.98) 6.1 (5.90, 6.29) 20.32 (20.34, 20.29)

ERA-Interim 222.58 (223.03, 222.13) 21.06 (21.13, 20.99) 5.91 (5.66, 6.16) 20.33 (20.35, 20.31)

NARR 221.48 (221.93, 221.03) 21.12 (21.16, 21.07) 6.2 (5.98, 6.42) 20.25 (20.28, 20.22)

CanRCM4 227.42 (227.84, 226.99) 21.03 (21.08, 20.99) 6.18 (6.04, 6.31) 20.27 (20.29, 20.24)

CanRCM4noSN 227.96 (228.41, 227.52) 20.91 (20.96, 20.87) 5.97 (5.83, 6.10) 20.12 (20.14, 20.09)

CanRCM4022 228.26 (228.63, 227.89) 21.04 (21.06, 21.02) 5.99 (5.92, 6.06) 20.24 (20.26, 20.22)

CanRCM4NCEP 226.11 (226.54, 225.68) 20.98 (21.02, 20.93) 6.23 (6.05, 6.41) 20.25 (20.28, 20.22)

CRCM5 227.96 (228.40, 227.52) 21.13 (21.20, 21.06) 6.75 (6.52, 6.98) 20.34 (20.37, 20.31)

HIRHAM5 223.43 (223.99, 222.86) 20.95 (21.02, 20.89) 6.22 (5.95, 6.49) 20.29 (20.32, 20.25)

RCA4 226.52 (227.15, 225.88) 21.18 (21.30, 21.06) 6.86 (6.45, 7.26) 20.39 (20.44, 20.35)
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(Fig. 5). CanRCM4, CanRCM4NCEP, CRCM5, and

HIRHAM5 reproduce the sign andmagnitude of the slope

compared toANUSPLIN1Livneh, despite a disagreement

between the driving model (ERA-Interim) and observa-

tions. CanRCM4noSNagreeswith the drivingmodel, while

the spectrally nudged CanRCM4 does not. The improve-

ment compared to observations in the downscaled run over

ERA-Interim may demonstrate the added value of the

RCMs, although more analysis is necessary given the

positive slope in the highest resolution model-based prod-

ucts (NARRandCanRCM4022). Although care should be

taken in the interpretation of these regional means, there is

some value in the comparison, particularly for the

CanRCM4 simulations. The lack of agreement between

simulations of the same model is interesting as it suggests

the relationship between TNn and blocking in this region is

not only dependent on the physics packages of the RCM.

The influence of blocking on the PDFs of TNn in

RegNN is generally consistent with the observed datasets

(Fig. 7). In RegPP the observationally based datasets

separate the PDFs of the three blocking regimes

reasonably well at the warm end of the distribution.

This separation is less evident in the RCMs, parti-

cularly for no-blocking and mean-blocking regimes in

CanRCM4noSN and RCA4 and for the mean and

blocking regimes in HIRHAM5 (Fig. 9). The PDF of

TNn when BF is high is positively skewed in all

CanRCM4 simulations, similarly to NARR (Fig. 9).

In RegNP the distribution of TNn when BF is high is

well reproduced by HIRHAM5 and CRCM5 com-

pared to ANUSPLIN1Livneh, while the TNn distri-

butions of CanRCM4 are too wide and negatively

skewed (Fig. 8).

The 20RV difference between high and low block-

ing is generally well simulated by the RCMs, although

there are differences compared to observations for

some regions and models (Figs. 6 and 10). HIRHAM5

and CRCM5 generally capture the spatial extent and

magnitude of the largest differences well compared

to both observations and reanalysis (Fig. 6). The

CanRCM4 simulations do not reproduce the magni-

tude and extent of the differences in the Pacific

Northwest well, as the extent of the largest differ-

ences in the 20RVs is much reduced compared to the

reanalysis products (Fig. 10). All CanRCM4 simula-

tions and RCA4 have a region in the southeastern

United States where the magnitude of the difference

between blocking regimes is large. This region is ev-

ident in ERA-Interim but is of a smaller magnitude.

4. Discussion and conclusions

We examined the influence of northeastern Pacific

blocking frequency (BF) on the winter monthly minima

TABLE 5. As in Table 3, but for RegNP.

m b1 s g1

ANUSPLIN1Livneh 214.64 (214.92, 214.35) 20.81 (20.86, 20.76) 4.4 (4.20, 4.60) 20.15 (20.18, 20.12)

ERA-Interim 210.9 (211.17, 210.63) 20.86 (20.88, 20.84) 4.08 (4.01, 4.16) 20.08 (20.10, 20.06)

NARR 210.94 (211.20, 210.68) 20.9 (20.91, 20.88) 4.13 (4.06, 4.20) 0.09 (0.07, 0.11)

CanRCM4 211.64 (211.98, 211.30) 20.97 (21.00, 20.94) 5.25 (5.07, 5.42) 20.18 (20.22, 20.15)

CanRCM4noSN 211.63 (211.94, 211.32) 20.89 (20.93, 20.84) 4.33 (4.20, 4.46) 0.16 (0.13, 0.18)

CanRCM4022 211.66 (212.06, 211.26) 20.81 (20.84, 20.79) 4.1 (3.95, 4.26) 20.02 (20.05, 0.01)

CanRCM4NCEP 215.93 (216.32, 215.54) 20.95 (20.97, 20.93) 4.97 (4.87, 5.06) 20.27 (20.29, 20.25)

CRCM5 211.24 (211.58, 210.89) 20.96 (20.99, 20.93) 5.05 (4.89, 5.21) 20.18 (20.21, 20.15)

HIRHAM5 29.69 (29.94, 29.44) 20.72 (20.73, 20.71) 4.18 (4.12, 4.25) 20.09 (20.11, 20.07)

RCA4 27.35 (27.66, 27.04) 20.89 (20.92, 20.86) 4.07 (3.90, 4.23) 20.02 (20.05, 0.01)

TABLE 4. As in Table 3, but for RegPP.

m b1 s g1

ANUSPLIN1Livneh 211.23 (211.82, 210.65) 0.34 (0.32, 0.36) 1.96 (1.90, 2.01) 0.41 (0.39, 0.42)

ERA-Interim 27.46 (27.94, 26.98) 0.19 (0.17, 0.21) 1.72 (1.68, 1.76) 0.31 (0.30, 0.33)

NARR 25.80 (26.26, 25.34) 0.34 (0.32, 0.35) 1.82 (1.79, 1.86) 0.38 (0.36, 0.40)

CanRCM4 211.44 (212.07, 210.81) 0.36 (0.33, 0.39) 2.61 (2.53, 2.68) 0.32 (0.30, 0.35)

CanRCM4noSN 213.30 (214.13, 212.46) 0.30 (0.27, 0.32) 2.78 (2.68, 2.89) 0.34 (0.32, 0.37)

CanRCM4022 213.43 (214.31, 212.55) 0.28 (0.25, 0.32) 2.67 (2.56, 2.77) 0.32 (0.29, 0.35)

CanRCM4NCEP 214.69 (215.52, 213.85) 0.09 (0.07, 0.11) 2.76 (2.69, 2.83) 0.40 (0.38, 0.42)

CRCM5 29.78 (210.55, 29.01) 0.36 (0.32, 0.39) 2.56 (2.44, 2.67) 0.31 (0.28, 0.34)

HIRHAM5 26.82 (27.36, 26.27) 0.03 (0.02, 0.05) 1.85 (1.79, 1.90) 0.55 (0.53, 0.57)

RCA4 27.32 (28.17, 26.46) 0.10 (0.08, 0.12) 2.38 (2.23, 2.53) 0.30 (0.27, 0.33)
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FIG. 7. Probability density functions of RegNN TNn estimated from average GEV parameters in M2 with no

blocking (red), 6 days of blocking (50th percentile, black) and 16 days blocking (90th percentile, blue).Distributions

are plotted for each dataset (a) ANUSPLIN1Livneh, (b) ERA-Interim, (c) NARR, (d) CRCM5, (e) CanRCM4,

(f) CanRCM4noSN, (g) CanRCM4NCEP, (h) CanRCM4022, (i) HIRHAM5, and ( j) RCA4.
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of minimum temperature. We find that the inclusion of

blocking frequency as a covariate in the GEV model

significantly improves its fit over the majority of North

America, demonstrating the extent of the significant

influence blocking has on extreme minimum tempera-

tures. In northern Canada and the southwestern United

States blocking significantly influences both the location

and scale parameters.

FIG. 8. As in Fig. 7, but for RegNP TNn.
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We explored this relationship further in three regions

where blocking has a consistent positive (RegPP), negative

(RegNN), or mixed (RegNP) influence on the location

and scale parameters. First, in RegNN (a region covering

western and central Canada) increased BF is associated

with a negative slope on both the location and log-

transformed scale parameters, indicating a shift to cooler

minimum temperatures with less variability under a high

FIG. 9. As in Fig. 7, but for RegPP TNn.
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FIG. 10. The difference in the 20-yr return value of TNn (8C) when winter monthly BF is at the 90th and 10th

percentiles in (a)ANUSPLIN1Livneh, (b)ERA-Interim, (c)NARR, (d)CRCM5, (e)CanRCM4, (f)CanRCM4noSN,

(g) CanRCM4NCEP, (h) CanRCM4022, (i) HIRHAM5, and (j) RCA4. Pixels where the GEV is not a good fit for

winter TNn are marked in gray.
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blocking regime. In the eastern United States (RegNP)

increased blocking is associated with a negative slope in

the location parameter, but the influence on the scale

parameter is mixed between datasets. In observations

there is a positive slope on the log-transformed scale pa-

rameter, indicating that blocking is associated with cooler

and more variable temperatures, while in NARR the

slope is negative, indicating the blocking is associated with

cooler and less variable extreme temperatures. Finally, in

RegPP (the southwestern United States) increased BF is

associated with a positive slope in both the location and

log-transformed scale parameters, indicating warmer and

more variable temperature extremes when BF is high.

Changes in variability associated with atmospheric

blocking can be relevant to predictability in a weather

forecasting context, particularly in regions such as western

Canada where variability of minimum temperature ex-

tremes decreases. An investigation of the extent to which

these links are reproduced in weather forecasts at various

lead times would provide a useful pathway for an aspect of

process-based verification of minimum temperature pre-

dictions produced by weather forecast models.

The observed relationship between winter mini-

mum temperatures and blocking is consistent with

previous studies (Pfahl andWernli 2012; Carrera et al.

2004; Favre and Gershunov 2006). Carrera et al.

(2004) identified a similar region with an increased

likelihood of cold mean and extreme temperatures un-

der an Alaskan blocking regime. Their region extended

southeast from the Yukon toward the southern plains of

the United States and was characterized by cooler

temperatures associated with reduced variance. The

mechanisms of this relationship are reasonably well

understood. Persistent anticyclones in the northeast Pa-

cific advect cold air from polar regions into lower lati-

tudes and promote clear skies (Pfahl and Wernli 2012;

Favre and Gershunov 2006); evidence of this can be seen

in the 500-hPa geopotential height anomalies in Fig. 1a

and the vector wind anomalies in Fig. 2. Carrera et al.

(2004) demonstrated that pronounced troughing occurs

downstream over North America when the Alaskan

region is blocked.

Furthermore, Carrera et al. (2004) identified a region

in western Alaska where blocking is associated with

warm temperatures (Carrera et al. 2004). This region

was evident in the 20-yr return value difference in the

reanalysis products over Alaska (ANUSPLIN1Livneh

does not cover Alaska) and in all products over north-

western Canada. Previous work suggests there is little

influence of warm air advection in collocated blocking

events, instead attributing the warmer temperatures to

adiabatic warming from subsidence and clear-sky radi-

ative forcing (Pfahl and Wernli 2012).

In the southwestern United States (RegPP) blocking

has a significant influence on both the location and scale

parameters. This region of positive influence is not

identified by previous studies as the increase in variability

under a blocking regime results in overall lower extreme

temperatures. Favre and Gershunov (2006) note the

change of sign around the Mexican border in the corre-

lation between cyclonic activity in the northeast Pacific

and mean minimum temperature, which corresponds to

the positive difference in return values.

The influence of blocking on the variability of TNn in

RegNP is interesting as statistically significant impacts

of opposite sign are detected in ANUSPLIN1Livneh

and NARR. This region may be influenced by the

strength of the South Atlantic high pressure cell. Carrera

et al. (2004) found variability in the strength of this cir-

culation within Alaskan blocking events, with stronger

circulation associated with stronger southwesterly flow

over the southeastern United States and increased pre-

cipitation in the Ohio River valley. Given the location of

the Atlantic high toward the edge of the NARR domain,

the reanalysis product may have some deficiencies in the

simulation of this process. Variability in this region may

also be related to the southerly penetration of cold fronts

or modification of the intensity of cold air outbreaks

related to differences in the snow line due to model tem-

perature biases. Furtherwork on this issuewould beuseful.

Regional climate model simulations are generally

able to simulate the relationship between blocking

and minimum temperature. Specifically, CRCM5 and

HIRHAM5 reproduce the spatial pattern of blocking

influence best. RCA4 and the CanRCM4 simulations

do not capture the extension of significant blocking

influence extending south into the United States.

Projections of blocking activity in the twenty-first

century are mixed (Masato et al. 2013). An examina-

tion of future blocking activity showed that 4 out of 12

general circulation models (GCMs) show an increase in

Pacific blocking activity under a high emissions scenario,

while only 2 GCMs demonstrated a decrease in Pacific

blocking (Masato et al. 2013). The nature of the re-

lationship between projected atmospheric blocking and

temperature in North America would be an interesting

question for future work.

In general, RCMs running on a North American do-

main are able to realistically modulate the intensity of

cold temperature extremes in response to North Pacific

blocking in their driving data. Thus, they should be able

to add value to high-resolution projections of changes in

temperature extremes as they combine the appropriate

modulation of extremes with the expected benefits of

topographic forcing and the more detailed representa-

tion of the atmosphere and land–atmosphere coupling.
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