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ABSTRACT

We provide a comprehensive framework of analyzing the diffusion process of
renewable technology, incorporating epidemic and pecuniary effects. Relying on
a panel dataset consisting of information from 1207 CDM wind projects in thirty
provinces over the period 2004-2011, we find strong evidence on the dominant
role of the epidemic effect and new evidence on pecuniary effects that generate
a diminishing marginal effect of profitability in inducing technology adoption.
Our numerical simulation demonstrates that the epidemic effect can play a quan-
titatively important role in the spread of renewable energy technology and mark-
edly enhance the optimal social welfare. Our findings convey important policy
implications for regulators when choosing policy instruments to enhance the dif-
fusion and adoption of clean technology. Price instruments should be comple-
mented by a wide range of non-market instruments to address non-market barriers.
Policy interventions should be taken using a systemic approach.
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INTRODUCTION

Increasing environmental and energy concerns can be addressed by accelerating techno-
logical change around the world. A technology can significantly impact an economy only if it is
widely adopted by producers and accepted by consumers. Delays in deployment of low-carbon
technologies could rule out the cost effectiveness of global climate policy (IEA 2015). Also, pro-
ductivity growth has slowed down over the 2000s, partly owning to a slowdown in diffusion of
global frontier innovations (Andrews et al. 2015). The question remains open—How will a renew-
able energy technology, once introduced, diffuse at a reasonably rapid pace?

The wind power sector in China provides a stylized fact. Although China had almost no
wind power capacity in 2001, the country has led the global wind market with the highest installed
capacity since 2010. This seemingly accessible wind technology did not diffuse to all countries but
rather showed two deployment paths in the past decade. While most countries have failed to ac-
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1. The CDM is the biggest global carbon offset mechanism to date, which allows industrialized countries to partly meet
their binding commitments by earning Certified Emission Reduction (CER) credits derived from the mitigation projects
carried out at lower costs in developing countries. Almost all Chinese wind projects declared over the period of 2004-2011
have responded to the CDM.

2. The number of adopters will increase over time while the adoption process is accelerated initially and then decelerated
until the satiation point is reached.

celerate wind technology diffusion, China’s wind energy has been surging. How could China have
kept the technology diffusion so rapidly? What are the quantitative effects of various driving forces?

The literature has identified two groups of driving forces behind technology diffusion. One
group includes market-based forces. Certain economic instruments can provide financial incentives
to potential technology adopters by correcting market failures, i.e. allowing the adopters to explicitly
obtain social net benefits associated with renewable technologies. The other group of driving forces
is non-market based from a systematic perspective. For example, a specific institutional and regu-
latory framework may induce technological change. A comprehensive theoretical and empirical
framework is required to investigate market- and nonmarket-based forces of renewable technology
diffusion to support decision making in the choice of policy instruments.

In this article, we provide such a framework by developing a theoretical model that con-
siders both groups of driving forces in the technology diffusion literature. Then, we validate the
model with historical data derived from 1207 Chinese wind projects in the Clean Development
Mechanism (CDM)1 over the period 2004-2011. Finally, we numerically simulate the pathways of
optimal production subsidies for maximizing social welfare associated with the wind power sector
in China.

I. BRIEF LITERATURE OF TECHNOLOGY DIFFUSION

Technology diffusion is the process of gradual adoption of a new technology by an econ-
omy as defined by the well-known Schumpeterian trilogy of technological change (Schumpeter,
1934). This process is generally analyzed within two theoretical frameworks: nonmarket interme-
diated (or epidemic) and market intermediated (or pecuniary) approaches.

Nonmarket approach relies on an analog to the spread of an epidemic. The more firms/
people are “infected” (those that have adopted the technology), the more likely the others will also
be “infected”. Adoption occurs once potential adopters become aware of the new technology. In-
creasing spread of information between previous and potential adopters reduces the uncertainty
surrounding the technology and leads to further rapid adoption. Earlier works used probability
density functions and Bass models to develop the concept of information acquisition (Mansfield
1963; Bass 1969, 2004). Bass diffusion models are typically applied to consumer decision-making
and less to firm decision-making. All these epidemic-type models specify an S-shaped diffusion
curve.2 Recently, this social contagion is also discussed as peer effects (Gordon et al. 2014; Manski
1993). With the help of a disaggregate dataset of daily residential solar-panel adoption in California,
Bollinger and Gillingham (2012) estimate the magnitude of peer effects by allowing for better
identification of the peer group.

The epidemic effect is likely to be systemic. A regulatory framework and national inno-
vation system are important to provide a long-term view with clear milestones, reduce uncertainty
and establish credibility. National systems of innovation (NSI) and regulatory instruments are key
factors to shape and convey this epidemic effect. The concept of the NSI was developed successively
by Freeman (1987), Lundvall (1992), Nelson (1993), and Metcalfe (1995). Their definitions of the
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3. Bank, equity investor, utility, grid operator, civil and electrical works contractor, turbine supplier, and land owner are
listed among key institutions.

4. In Ru et al. (2012), the development of China’s wind energy sector is divided into four stages: (1) early R&D activities
pushed by the government (1970s–1996), (2) imitative innovation based on technology imports (1997–2003), (3) cooperative
innovation including collaborative design and joint venture (2004–2007), and (4) indigenous innovation based on enterprise
internationalization and R&D globalization (2008–present).

5. Under the Medium to Long-Term Renewable Energy Plan in 2007, generators with over 5 GW of capacity were
required to reach specified capacity targets for non-hydro renewables: 3% by 2010 and 8% by 2020. However, there appeared
to be no penalty for non-compliance: half of the companies missed their 2010 mandatory market share targets. (Retrieved
from http://www.theenergycollective.com/michael-davidson/279091/transforming-china-s-grid-sustaining-renewable-en-
ergy-push)

6. A complete description of epidemic, rank, order and stock effects can be found in Karshenas and Stoneman (1993).
Reminder that both order and stock effects are derived from the game-theoretical models and suggest a negative impact of
previous adoption on future adopter decisions. However, the causes of the negative impact are different. Stock effects come
from the output market, whilst order effects focus on the first mover advantage. From the theoretical modelling perspective,
the stock effects could be identified in a one-period model, but the order effects must be analyzed in an intertemporal model.
Yet distinguishing empirically between these effects is extremely difficult if not impossible with available data (see, for
example, Karshenas and Stoneman 1993).

NSI share some common points. They all emphasize on the network of institutions whose inter-
actions determine the performance of technology development and diffusion, and the coordinating
role of the government in influencing these interactions. A windfarm project lifecycle often involves
multi-stakeholder cooperation.3 The interactions of these institutions will be crucial to determining
the speed of wind technology deployment. Ru et al. (2012) provide a good review on China’s wind
technology innovation pathways, as well as policy and market frameworks at different stages of its
maturity.4 Mandatory requirements, obligation schemes or voluntary approaches can also help
strengthen this epidemic effect. The Chinese government did encourage electricity generators to
include a minimum share of clean energy in their output mix, even though these goals were not
often associated with a penalty in case of non-compliance.5

Unlike the epidemic models assuming that potential adopters will use the technology once
they learn about it, a few models focus on the market-intermediated effects. The technology adoption
is modeled as an individual choice based on profitability consideration. Therefore, it is the expected
net gain rather than information acquisition that determines the adoption decision. Three profitability
driven effects are identified in the literature: rank effect, stock effect and order effect (Karshenas
and Stoneman 1993; Geroski 2000; Hoppe 2002).6

The rank effect models, also known as Probit models, rank firms in terms of the benefit
from technology adoption, mostly determined by firm’s heterogeneous characteristics such as firm
size, age, capital structure, learning and search costs, switching costs and opportunities costs. Those
firms with the highest ranks adopt the technology earlier than others.

The game-theoretical models suggest that the stock effect and order effect may negatively
affect technology diffusion. The stock effect assumes that the benefit to the marginal adopter of a
new technology decreases as the number of previous adopters increases (Karshenas and Stoneman
1993). Adoption of a cost-reducing process technology could lead to more production by all firms
in the industry, thereby lowering prices in the output market and stimulating demand for the prod-
ucts. Consequently, for any given cost of technology acquisition, a number of adopters may suffer
losses if adoption is too wide to keep a reasonable supply of their products (Reinganum 1981). The
order effect results from the assumption that the return to a firm from adopting new technology
depends upon its position in the order of adoption, with high-order adopters achieving a greater
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7. Karshenas and Stoneman (1993) study the spread of computer numerically controlled machine tools in the UK
engineering industry. Gourlay and Pentecost (2002) investigates the diffusion of automated teller machines in the UK
financial sector. Colombo and Mosconi (1995) concentrate on the diffusion of flexible automation production and design/
engineering technologies in the Italian metal working industry. Mulligan and Llinares (2003) analyse the diffusion of high-
speed detachable chairlifts in the US ski industry. Hannan and McDowell (1987) study the adoption of automatic teller
machines by US banking firms. Kerr and Newell (2003) study the U.S. petroleum industry’s phasedown of lead in gasoline.

8. One exception is Kerr and Newell (2003) that rejects the existence of epidemic effect.
9. Given the fairly homogeneous wind technology, wind resources availability and administrative process; most of

explanatory variables have a limited effect on the project scale (installed capacity per project). Moreover, the vast majority

return than low-order adopters (Karshenas and Stoneman 1993). The order effect is usually related
to the first-movers that can obtain prime geographic sites or preempt the pool of skilled labor. High-
order adopters can face less competition and gain greater benefits, therefore their decisions affect
the adoption dates of low-order adopters (Fudenberg and Tirole 1985). However, it is worth noting
that later adopters can potentially benefit from improved performance and reduced cost of a tech-
nology as second-mover advantages (Rosenberg 1976; Hoppe 2000).

In the context of China’s renewable energy sector, the order effects relate to first-mover
advantage through control of a number of resources. Early adopters may benefit from the most
favourable land and wind conditions. They may receive a higher feed-in tariff because a periodic
tariff degression is expected to be implemented by the regulator. They can also receive carbon
revenue through the CDM. Early adopters can access to the locations with a higher emission baseline
enabling to claim more carbon credits. In a regulated electricity market, the stock effects generated
through the output market may be less pronounced unless the variation in electricity sale prices is
contained by a long-term feed-in tariff agreement. However, grid integration may still raise a serious
concern due to the intermittency and non-dispatchable nature of wind energy. In fact, the Chinese
grid constraint resulted in an abandon of a significant part of wind electricity. This could trigger
the expectation on revenue loss of the wind investors. The rank effect, associated with firms’ specific
characteristics such as size, age, and capital structure, is mostly represented by the capital costs of
a renewable project.

The theory cannot predict the role of precedent adoption unambiguously, with stock and
order effects having a negative impact and epidemic effects by contrast a positive one (Karshenas
and Stoneman 1993). The net impact of precedent adoption on later adopter behavior must be
treated as an empirical question. This article contributes to the literature from the perspective of
theoretical method and analysis scope. The majority of literature on technology diffusion involves
industrial and financial sectors.7 Explicit modelling renewable energy diffusion is less common.

Previous empirical analysis has been inconclusive. Existing literature is unanimous in
finding that adoption decision is positively correlated with firm size and epidemic effect.8 On the
contrary, evidence on stock and order effects is mixed. Depending on the characteristics of tech-
nology and output market structure, Mulligan and Llinares (2003) and Hannan and McDowell
(1987) find opposite impact of precedent adoption in the technology diffusion process, although
their competitive models do not attempt to distinguish the order and stock effects. The results of
Karshenas and Stoneman (1993) and Colombo and Mosconi (1995) lend little support to the ex-
istence of stock and order effects, whilst those of Gourlay and Pentecost (2002) and Kerr and
Newell (2003) support the negative impact of order effects and stock effects respectively.

The existing studies have used a hazard function to study the probability of technology
adoption. In the real-world market, utility-scale renewable energy investment may be highly dom-
inated by a couple of utility groups. A project company is often affiliated with its parent group,
thus the project company may have little impact on investment decision and project scale.9 There-
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of wind projects in China fall within the range of 49-50 MW in order to benefit from a simplified administrative procedure
(wind projects of less than 50 MW are subject to the approval of the provincial authority instead of the central government).
For these reasons, it is appropriate to construct a province-level panel dataset to study the policy impact at an aggregated
level.

fore, the hazard function may fail to distinguish possible differences in the hazard rates between
the independent establishments and those with corporate affiliation (Karshenas and Stoneman 1993).
It is not possible to separate the epidemic effects from stock and order effects, because the existing
stock of adopters enters the estimating equation via the stock and order effects. In order to inves-
tigate the epidemic effect, the time dependence of the baseline hazard is separately tested, as the
epidemic hazard is absorbed into the baseline hazard. In addition, cost variable is often highly
correlated with stock variable; the inability to precisely estimate the stock effects is not surprising.

II. THEORETICAL MODEL

In this study, we specify a logistic demand function on newly installed capacity of renew-
able energy at continuous time, which explicitly captures two components. One component repre-
sents the profitability effect and the other the epidemic effect. Furthermore, we generate a reduced
form equation, relating the technology adoption level to time duration dependence (epidemic effect),
Net Present Value (NPV) and quadratic form of NPV of renewable energy investments (aggregating
rank and order effects) and the level of previous adoption (stock effect). Our model fits well to the
historical data of wind power diffusion in China. While the empirical literature in technology
diffusion found little support for the stock and order effects, this study may provide an empirical
support of epidemic, rank, stock and order effects in a real-world renewable energy diffusion pro-
cess. We find that China’s wind energy diffusion shows a fairly strong epidemic effect and also the
stock and order effects have different implications on the profitability of investments. We also
numerically demonstrate that to what extent an optimal renewable subsidy will be affected by these
market and nonmarket effects.

Following Benthem, Gillingham et al. (2008), we first specify a logistic demand function
with two components. One component captures the profitability effect and the other captures the
epidemic effect. Our theoretical underpinnings rely on disentangling non-market and market inter-
mediated factors, discussed above in the technology diffusion literature. New adoption of a renew-
able energy technology at any time can be represented by newly installed capacity at time ,t≥0 t

maxa ⋅ QtQ = + Dif . (1)t t⋅max – b NPVta + (Q – a ) ⋅ et t

where is the net present value of the renewables investment at time to capture the profitabilityNPV tt

effect; is technology diffusion level attributed to the epidemic effect at time ; is themaxDif t Qt

maximal market potential for energy installation; is a parameter determined by cumulative in-at

stalled capacity at time ; and is a fixed parameter.t b
The parameter is adjusted over time. Based on the epidemic theory, it serves to incor-at

porate the previous time’s diffusion into the current time’s base demand, accounting for higherDift

information penetration and decreasing technology uncertainty when adoption is accumulated. The
parameter can be expressed byat



200 / The Energy Journal

Copyright � 2016 by the IAEE. All rights reserved.

10. Available at http://folk.uio.no/taoyuaw/Liu_Wei_2015Annex.pdf

Q + Dift–h t–ha = a ⋅ . (2)t t–h � �Qt–h

where is a small time interval.h
The second term on the right hand side of Eq. 1 represents the technology deploymentDift

attributed to the epidemic effect. It is also modeled as a logistic growth function of previous time’s
demand level.

Qt– hDif = γ ⋅ Q ⋅ 1– (3)t t– h � �maxQ

where is a fixed parameter indicating the magnitude of the epidemic effect. The epidemic effectγ
will asymptotically converge to zero as the new installed capacity in previous time approaches its
maximal capacity.

If we assume that the maximal market potential for energy installation ( ) is large andmaxQ
the functions in the above three equations are continuous with respect to time , then we obtain (thet
proof is detailed in Annex 110)

QSt1 γ ⋅ t– + b ⋅ NPVt� �maxQQ � e (4)t 1–γ

We will utilize this equation to decompose the profitability effect into rank, stock and order
effects and test the magnitude of these effects. The double log form of Eq. 4 is

γ
Model A: ln(Q )� γ ⋅ t– QS + b ⋅ NPV + β (5)t t tmaxQ

where is a constant including the effect of all missing variables besides one component of .
1

β
1–γ

Eq. 5 is the basic model that we will estimate for testing the epidemic, rank, stock and
order effects. In the presence of the epidemic effect, the newly installed capacity should show
positive time dependence. The estimated coefficient of should be around . In previous studies,t γ
the driving forces behind the epidemic effect are generally summarized as information acquisition,
which can only occur over time. In this sense, the epidemic effect is related to the endogenous
forces that grow with time duration. Hence, the epidemic effect captures all effects of non-price
driving forces that evolve over time.

The coefficient of captures the stock effect. According to the literature, the profit gainQSt

to an adopter will fall as the number of adopters increases and also that later adopters will make
less gains than earlier adopters. Therefore, we expect this coefficient to be negative. The coefficient
of may capture the aggregate impact of rank and order effects on the expected profitabilityNPVt

of technology adoption.
To clarify, the expected profitability of a renewable project is measured with the net present

value ( by discounting future cash flows in comparison to an alternative investment withNPV )t
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equivalent risk-return conditions, assuming full information and rational behavior among investors.
Consequently, needs to be non-negative to incentivize renewable installations. Policy makersNPVt

can alter the speed or total level of diffusion of a new technology by internalizing positive or
negative externalities associated with the technology adoption. With reference to the China’s con-
text, policy makers have implemented feed-in-tariff and carbon pricing policies in order to create
favorable conditions for investors in renewable energy technology. can be calculated byNPVt

CO2 emission Operation(FIT + P ⋅ p ) ⋅ yield– CT t t tInvestNPV = – C + (6)∑t t n = 1 n(1 + i)

where and are, respectively, capital costs and operation & management (O&M)Invest OperationC Ct t

costs of renewable project at time t; and denotes, respectively, the feed-in-tariff forCO2FIT Pt t

renewable electricity and CO2 price; is the emission factor of the conventional electricityemissionp

output replaced by renewable electricity; represents the full load operating hours correspond-yield
ing to theoretical output efficiency by considering wind quality and technology performance; i
denotes the investor’s discount rate and T is life time of a renewable project. is a proxy thatNPVt

captures the rank and order effects on the expected profitability of renewable investments. In the
case of renewable energy projects, the order effect, relative to the first-mover advantage, mainly
comes from the site-specific characteristics and electricity purchasing price, because the earlier
adopters may benefit from the most favorable sites with higher emission intensity of the local
electricity system ( ), and higher renewable resources endowment ( ). Also, the earlieremissionp yield
adopters may receive a higher electricity production subsidy ( ), because a periodic tariff de-FITt

gression can be implemented by the regulator. The rank effect, associated with firms’ specific
characteristics such as size, age, and capital structure, is mostly represented by the capital costs of
a renewable project ( ). The data of capital costs in our empirical part includes wind turbineInvestCt

cost and also expenses related to grid connection, civil works and other miscellaneous items. The
difference in the capital costs for a given time may be determined by firms’ characteristics.

Additional to Model A expressed by Eq. 5, we will estimate two other regression models:

γ
2Model B: ln(Q )� γ ⋅ t– QS + b ⋅ NPV + c ⋅ NPV + β (7)t t t tmaxQ

2Model C: ln(Q )� γ ⋅ t + b ⋅ NPV + c ⋅ NPV + β (8)t t t

In both alternative models, we introduce a quadratic term of , which can capture theNPVt

diminishing marginal effect of on the technology adoption level. Hence, we expect the co-NPVt

efficients of the quadratic term of to be negative. In fact, the stock effect may affect theNPVt

technology adoption through the investment profitability. Therefore, we remove in Model C toQSt

better understand to what extent the impact of on is partially captured by . We checkQS Q NPVt t t

the robustness of the empirical results derived from models A, B and C.

III. DATA

Models A, B and C are estimated using a panel of provincial data over the period of 2004-
2011. The dataset is constructed by surveying the primary data relative to all 1207 Chinese wind
projects, either registered or undergoing validation in the Clean Development Mechanism (CDM),
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Table 1: Summary Statistics

Variable Unit Mean Std. Dev Min Max

New installed capacity (Qt) MW 5.205 1.376 2.610 8.502
NPV CNY/KW 0.696 1.203 –3.412 7.254
Cumulative capacity MW 1113.699 2287.368 0 17303.78
Time duration Year 3.5 2.296 0 7
Capital costs (CNY2010) 1000 CNY/kW 8.13 1.04 6.11 11.3
FIT price (CNY2010) CNY/Kwh 0.49 0.08 0.36 0.74
Plant load factor % 0.2372 0.2589 0.1669 0.3631
Emission factor of the electricity system Ton CO2/Kwh 0.9492 0.092 0.6789 1.1376

Source: Own calculation. CNY represents Chinese Yuan.

11. The CDM rests fundamentally on the concept of additionality—the proposed project would not have occurred in
the absence of CDM support.

12. According to the CDM rules, each CDM project needs to compare its proposed project activity to the common
practice in the applicable geographical area.

13. Economic & Technical Assessment and Indicators for Construction Project (Version 3) National Development &
Reform Committee and the Ministry of Construction, 2006.

as of the end of 2011. The CDM project participants were required to submit a Project Design
Document (PDD) that aims to demonstrate the project additionality11 and emission reductions. Since
nearly all the wind projects in China have participated in the CDM, the sampling bias, resulted
from the dataset constructed via the CDM, does not raise a concern for representing the whole wind
energy market (Liu 2014). For a minor of wind projects that are implemented without the CDM
support, the projects are mostly identified as recipient of special government funding or foreign
aid.12

The detailed project-specific data derived directly from the PDD includes installed capac-
ity, FIT price, capital cost, the plant load factor and emission factor of the connected electricity
grid. The dataset of the CDM projects is classified in terms of the project starting date and located
province as stated in the PDD. This study takes into account the sum of CDM-supported wind
capacity in each province for a given year. Accordingly, capital cost, the plant load factor, FIT price
and emission factor used here represent the average of all CDM projects within the same province
for a given year. All prices and costs have been deflated to 2010 prices using the China-specific
GDP deflator published by the IMF.

The capital costs of a project include all items of the project’s initial investment. Apart
from turbine cost, the expenses related to grid connection, civil works and other miscellaneous
items are also included. This provides a comprehensive estimate of investment costs because this
aspect of expenses may represent about 24%-29% of onshore wind capital costs (Wiser et al. 2011).
The operational and maintenance costs are assumed to represent 2% of the initial investment. The
lifetime of a wind project is considered to be 20 years. The discount rate for calculating the NPV
is assumed to be 8% according to the common practice in the Chinese market. 13

As stated in a vast majority of PDDs, the expected price of Certified Emissions Reduction
(CER) credit is assumed to be 100 Chinese Yuan (CNY)/ton CO2, because the Chinese government
has been implementing a CER price floor policy in the wind projects. Even though this price signal
may not fully reflect ‘over-the-counter’ trading of the CDM activities, the financial feasibility study
of China’s CDM wind projects has largely adopted this price floor to make final investment decision.
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Table 2: Estimation Results: Newly Installed Capacity (ln(Qt))

Variables Model A Model B Model C

Time duration (t) 0.45 (0.05) *** 0.42 (0.05) *** 0.38 (0.03) ***
Net present value (NPVt) 0.02 (0.02) 0.16 (0.10) * 0.18 (0.07) **
Cumulative capacity (QSt) –0.00009 (0.00005)* –0.00008 (0.53)

2NPVt –0.04 (0.02) ** –0.05 (0.02) ***
Constant 6.15 (0.36) *** 6.07 (0.35) *** 5.51 (0.28) ***
Provincial fixed effects Yes Yes Yes
Adj. R-Squared 0.733 0.744 0.745
Number of observations 117 117 144a

F-test value (Model) 11.61*** 11.86*** 14.04***
F-test value (provincial effects) 7.05*** 6.02*** 10.03***

Source: Own estimation.
Note: Standard errors in parentheses. *** significant at the 1% level; ** significant at the 5% level; * significant at the 10%
level.
a The lagged cumulative capacity variable reduces the number of observations to 117, while the removal of this variable
makes our number of observation increase to 144.

14. A clear determination of the project start date is vital for the additionality test, because the consideration of the
benefits of the CDM prior to this date should be demonstrated by means of credible evidence.

The starting date of a CDM project activity is the earliest date at which either the imple-
mentation, construction or real action of a project activity begins. A vast majority of the CDM wind
projects in China have chosen the starting date as the date on which contracts have been signed for
the ordering of wind turbines or committing to civil works. This is quite consistent with the tech-
nology adoption concept—the decision concerning when and whether to adopt certain technology
that the firm knows to be available. The CDM activities are determined well in advance of real
wind farm installations.14 The CDM approval is a lengthy process—project developers had to wait
at least one year before final approval by the CDM Executive Board over our study period. Con-
sequently, it is appropriate to consider contemporaneous price signals in the regression models.

IV. EMPIRICAL ANALYSIS AND DISCUSSION

We use fixed effect models to estimate Models A, B and C. Each province has its own
unobserved characteristics, notably associated with wind resource endowment, energy production
and consumption patterns, infrastructure conditions and institutional arrangements, which may be
constant over time and correlated with the regressors. The fixed-effect model enables the removal
of these time-invariant and site specific characteristics and the avoidance of the estimation bias.
The estimation results are showed in Table 2. These results across models are complementary. In
all the models, the adjusted R-squared is acceptable at a level of around 0.74.

The estimated coefficients for time duration in all the three models are statistically signifi-
cant, indicating that one additional year may lead to an increase of newly installed capacity by
around 40%. This indicates the presence of epidemic effect, i.e., the annually installed capacity of
renewable energy shows positive time duration dependence. In the case of china’s wind energy
diffusion, the epidemic effect is found to be quite strong compared to the profitability effect. Based
on the regression results, the coefficient of the epidemic effect ( ) in Eq. 3 is estimated to be in theγ
range of 0.38-0.45. This finding is consistent with our intuition. China’s leapfrog in wind energy
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15. Over our study period, the Chinese wind power sector experienced different stages of development, from initial
demonstration to accelerated diffusion. At the early stage, the Chinese government granted higher price signals, notably
through five rounds of country-wide concession-bidding programs before applying four levels of tariff differentiated with
geographical wind resources quality.

16. It is noted that the output efficiency (yield) in NPV is the theoretical best-guess of wind power output considering
wind resources quality and technology performance at the stage of investment decision. This expected profitability may be
reduced if a significant loss of revenue occurs due to the grid constraints.

occurred when relatively mature wind technology was already widely used in developed countries,
leading to significantly decreasing marginal cost reduction of technology deployment and reducing
profitability effect. Our finding supports the dominant role of the epidemic effect in inducing wind
energy diffusion in such a context.

The estimated coefficient for is insignificant in Model A, but becomes significantNPVt

and relatively stable in the other two models, where the quadratic term of is added as one ofNPVt

the independent variables. This shows that in order to better represent newly installed capacity of
China’s wind energy, a quadratic term of needs to be included in Eq. 1. With the order effect,NPVt

the most wind favorable sites will be first used. The emissions intensive regions will also be better
incentivized to install wind projects via a carbon pricing policy. This first-mover advantage may
exercise a negative impact on the profitability of future adoption, which is embedded in NPV
through output efficiency ( ) and the emission factor of the electricity grid ( ). Accordingemissionyield p

to Fudenberg and Tirole (1985), for a given acquisition cost, adoption is only profitable to some
point in the order after which diffusion will only extend as the acquisition cost falls. In the China’s
wind energy sector, a FIT policy is put in place to guarantee a stable profitability of wind investment
over the project lifetime. The FIT prices for new wind projects are gradually degressed given the
technology penetration level.15 Meanwhile the acquisition cost of wind technology falls as well.
Under these combined effects, the expected profitability of wind investment (NPV) shows an up-
ward trend. Hence, we do not find that the expected benefit to the marginal adopter of wind tech-
nology decreases as the number of previous adopters increases.16 However, the NPV has a decreas-
ing marginal effect on wind technology diffusion. This turning point is estimated to be NPV =
0.18/ (2*0.05) = 1.8 in Model C.

As expected, the negative sign of cumulative capacity ( ) confirms the impact of stockQSt

effect on technology diffusion as discussed in the theoretical literature. Most of epidemic models
use existing stock of adopters to represent the endogenous information effects on technology dif-
fusion. However, our model explicitly specifies a time-varying baseline demand of technology
adoption to capture the epidemic effect. This makes the negative stock effect more visible.

Thus, we can empirically test the negative stock effect and the positive epidemic effect in
a coherent framework. In Model A, the coefficient on cumulative capacity (representing stockQSt

effects) is found to be statistically significant. Our evidence suggests that the negative stock effect
is largely outweighed by the positive epidemic effect in the case of China’s wind power deployment.
It is worth noting that this quite small magnitude of the coefficient of confirms the validity ofQSt

our assumption on (If is large, then in Eq. A3 in the annex 1). This also suggests
1

max maxQ Q �0
maxQ

that due to a large potential of renewable energy resources, the stock effect resulted from early-
stage technology adoption may not be very important.

Although the estimated coefficient of cumulative capacity is significant in Model A,QSt

where the quadratic term of is absent, it becomes insignificant in Model B, where the quadraticNPVt

term is present. This indicates that a large part of the effect of has been captured by the quadraticQSt
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17. Available at http://folk.uio.no/taoyuaw/Liu_Wei_2015Annex.pdf

term of . As stated in Reinganum (1981), prices of output product and market demand mightNPVt

change along with technology diffusion, leading to a negative impact on profitability of marginal
adoption. Our empirical results show that the stock effect of on newly installed capacity isQSt

actually channeled through the project profitability. As noted by Karshenas and Stoneman (1993),
the insignificance of cumulative capacity variable may not necessarily indicate the total absence of
stock effects and may alternatively be captured by the time-varying baseline hazard. If this is the
case, then removing the variable of cumulative capacity would lead to an increase in the estimated
coefficient for the time. However, as shown by the estimates of Model C, a decrease in the coefficient
for the time occurs with the omission of since the quadratic term of becomes economicallyQS NPVt t

and significantly more important.

V. NUMERICAL SIMULATION OF OPTIMAL SOCIAL WELFARE

To further put our empirical results in the perspective of policy implications, we numeri-
cally simulate the optimal social welfare, depending on the market and nonmarket factors. Assume
that policy makers aim to set up a time path of subsidies that maximize the discounted present value
of net social benefits. There are two streams of the benefits from wind technology adoption. One
involves the avoided external environmental costs from fossil-fuel electricity replaced by wind
electricity. The other stream takes the form of customer benefits from the policy-induced learning
effects received by wind electricity consumers. Hence, the policy makers need to solve a dynamic
optimization problem expressed by

extQ (S ) ⋅{C ⋅ yield + CB (S ,QS )– S ⋅ yield}T t t t t t tmax W(S ) = (9)∑S t t = 1 tt (1 + r)

where

• is the new installed capacity in year t (MW);Qt

• is the cumulative installed capacity at the beginning of year t (MW);QSt

• is fixed environmental benefit (RMB Yuan/kWh);extC
• is customer benefits per kWh;CBt

• is the average operational hours at the full load for the wind power sector;yield
• is the level of subsidy;St

• is the emission factor of the fossil fuel electricity (ton CO2/MWh);emissionp

• is the social discount rate.r

The net level of subsidy represents the difference between the FIT price and the electricity
price from a benchmark fossil fuel source. The FIT price is represented by the average feed-in tariff
in the wind power sector and the benchmark electricity price is calculated as the average electricity
price generated from fossil sources.

The customer benefits are calculated from actual costs for investment and operations and
maintenance (O&M) for a wind farm under the optimal FIT policy in comparison to a no-policy
case. O&M costs accrue over the project lifetime and need to be discounted. The details of the
calculation are in Annex 2.17
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We first calibrate the models with the base year data in 2010. Then, we simulate two policy
scenarios from 2011 through 2030 by setting up the epidemic effect coefficient as andγ = 0.38

, respectively. The FIT subsidy and lifetime of the wind projects are assumed to last for 20γ = 0.05
years in China’s context. It is worth noting that based on our empirical results, we added the
quadratic term of NPV in Eq. 1 to better simulate stock and order effects in the demand function.

The wind projects yield environmental benefits over its lifetime. Since electricity gener-
ation heavily depends on coal, we assume that the environmental benefits of wind-generated elec-
tricity come from the replacement of coal-generated electricity. This externality involves the total
costs occurred in the life cycle of the coal power plant, from coal mining, washing, transport, to
air pollution gases like SO2, NOx, Particulates, and also includes the climate damage caused by
CO2 emissions. The environment benefits associated with CO2 emissions are estimated at a price
of 20 EUR per ton CO2e. The costs of other pollutants are based on specific Chinese values.
According to Zhu et al. (2008), the total environmental benefits are estimated to be 0.0254 EUR
per kWh, i.e., 0.27 CNY per kWh with an exchange rate of 10.75 CNY/EUR in 2010.

The EU Directive in 2009 stipulated that the credits from the CDM projects registered
from 1 January 2013 onward would be prohibited in the third phase of the EU Emissions Trading
Scheme (ETS), with the exception of those from the least developed countries. Therefore, we
assume that the CO2 price for the wind projects installed after 2013 will become null. This supposes
that the feed-in-tariff will be the sole subsidy to support the wind power investments in China.

Relying on the same panel dataset, we empirically estimate the learning rate of wind energy
in China. The learning coefficient ( in Annex 2) is estimated to be 0.066, which leads to a learningα
rate of 4.4% (Yao et al. 2015). Our estimate is in the low range of “rule-of-thumb” learning estimates
for renewable energy technologies. This may reflect the fact that due to the maturity of onshore
wind technology, the marginal cost reduction effect from the technology deployment is decreasing.

Due to market and/or resource constraints, each technology may confront a maximum
production or capacity limit. China’s Meteorological Administration (CMA) estimates 2,380 GW
of onshore wind power potential, equivalent to 4,800 TWh/yr at a 23% average capacity factor
(CMA, 2006). A more recent study points out the same magnitude for China’s wind power resources
(He and Kammen 2014). Consistent with the experience in developed countries, we assume that in
medium-term, China’s wind energy can technically reach 20% of national electricity supply (Wiser
et al. 2011), which is forecasted to be 9,300 TWh in 2030 (IRENA 2014). Given an average capacity
factor of 23%, the technical maximum of on-shore wind installed capacity is translated into about
920 GW. Thus, is estimated to be approximately 50 GW on a yearly basis over the period ofmaxQ
2011-2030 in China.

The key parameters used in our simulation are displayed in Table 3.
To highlight the crucial role of the epidemic effect, below we compare the optimal social

welfare, annually installed wind capacity, environmental benefits, customer benefits and subsidy
cost between two cases: one assuming the epidemic effect in the past decade continues until 2030
( = 0.38) and the other assuming a much smaller epidemic effect ( = 0.05).γ γ

The optimal social welfare is much larger with the large epidemic effect, double of that
with the small epidemic effect. By contrast, the present value of total subsidies required with the
large epidemic effect is 10% below that with the small epidemic effect. The evolution of different
components of social welfare is shown in Annex 3.18 Meanwhile, the optimal subsidy is phased out
earlier with the large epidemic effect, 5 years ahead of the small epidemic effect case (Fig. 1). The
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Table 3: Parameter Values in the Simulation

Parameter Value Unit

Cumulated installed capacity by the end
of 2010

44,733 MW

Installed capacity in 2010 18,928 MW
Capital cost in 2010 9,500 RMB/kW
Lifetime of the wind farm 20 Year
Average Feed-in tariff (net VAT) 0.537 RMB/kWh
Fossil fuel electricity price in 2010 0.40 RMB/kWh
Annual growth rate of fossil fuel

electricity price
2%

Carbon price 100 ( = 0 after 2013) RMB/ton CO2e

Emission factor of the coal power plants 0.82 ton CO2/MWh
Yield (full load operating hours) 2,015 Hours/year
Environmental externality cost 0.27 Yuan/kWh
Maximum annual installed capacity 50,000 MW
Learning coefficient 0.066
Ratio O&M costs/capital costs 2%
Social discount rate 3%
Investment discount rate 8%
Demand function parameter (in 2009)a0 7840
Coefficient of NPV 0.35
Coefficient of NPV2 –0.05
Parameter of the epidemic effect γ 0.38 or 0.05

Figure 1: Optimal Subsidy of Newly Installed Capacity

cumulative installed capacity in the large epidemic effect case in 2030 is double of that in the small
epidemic effect case (Fig. 2). Hence, the society can benefit considerably if current epidemic effect
continues although it is almost impossible.

VI. CONCLUSION

In this article, we develop a theoretical model that incorporates market and nonmarket
effects in technology diffusion. With a panel data of China’s CDM wind energy sector, the model
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Figure 2: Annually Installed Wind Capacity (Unit = MW)

is used to estimate the magnitude of epidemic, stock, order and rank effects. Our model can be
generalized to any geographical context with rich renewable resources endowment, because we
assume that relative to the early adoption, the market potential of renewable energy endowment is
large enough to derive a reduced form of the empirical model. Thus, we do not need to compile a
dataset on the complete life cycle of technology diffusion to undertake empirical research on the
diffusion of new technologies.

We find that the epidemic effect may significantly influence the pattern of renewable
technology diffusion. In the case of China’s wind power diffusion, the evidence shows that the
epidemic effect outweighs the profitability effect. This implies that policy instruments can inter-
nalize positive (learning-by-doing) and negative (carbon emissions) externalities to obtain an overall
effect on adoption that is greater than their direct effects, since the new adopters induce others to
adopt as well. The cumulative impact of subsidies in forms of feed-in-tariff or carbon price will be
significantly greater than their immediate impact. Our simulation further demonstrates that such
epidemic effect can play a quantitatively important role in the spread of renewable energy tech-
nology and markedly enhance the optimal social welfare.

This finding has important policy implications on choosing instruments to induce tech-
nology diffusion. Our study suggests that the epidemic effect is not derived from the traditional
market failure-based policy perspective. It may be largely reflected in the absorptive capacity, user-
innovator interaction, and institutional cooperation. Understanding the sources of this epidemic
effect may change the justification of choosing policy instruments. With a traditional market failure
approach, policy intervention always aims to internalize externalities. However, with a systemic
approach of a national innovation system, such policies may have a set of different goals, such as
facilitating the knowledge creation and exchange, achieving institutional coordination not provided
by the market, or increasing the cognitive capacity of firms.

In the context of renewable energy market, we suggest that this information effect is more
likely to be formed and conveyed within a technology diffusion system: network of agents inter-
acting in a technology area under a particular institutional infrastructure for the purpose of gener-
ating, diffusing and using technology (Jacob et al. 2004). The policy makers need to strengthen this
technology diffusion system together with existing subsidies.
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We also provide empirical evidence on the existence of stock and order effects on renew-
able technology diffusion. Depending on the national context and regulatory characteristics of the
electricity market, the stock and order effects may not necessarily reduce the expected profitability
of marginal adoption of renewable technology. However, we find that the profitability of wind
investment has a decreasing marginal effect to encourage newly installed capacity.

The empirical part of our work could be extended by considering a wider range of tech-
nologies and we can apply the approach to other countries. It may also be useful to compare the
origins of the epidemic effect in different national innovation contexts.
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