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1 Introduction

The August 2002 flood in the Elbe basin was a showcase of a flood event, with esti-

mated damage costs of approximately US$ 12 billion (Becker and Grünewald, 2003).

The Elbe flood, jointly with other severe floods in Europe, provided a stimulus to two

ongoing scientific debates. The first debate takes place among hydrologists and concerns

historical observations and future projections of flood frequency, and its relation to the

possible impacts of climate change on river flow. The second debate takes place among

river basin decision-makers and concerns the need for additional (adaptive) investments

in flood protection measures. In this paper we link the two debates in a model that as-

sesses optimal investments in flood protection measures under uncertain climate change

impacts on flood risk.

There is mixed evidence on the impact of climate change on flood risk and extreme

flood events in river basins. On the one hand, Petrow and Merz (2009) analysed his-

torical observations for different river basins in Germany for the period 1951-2002, and

concluded that a large share of these basins show significant upward flood trends, and

Milly et al. (2002) showed “significant trends towards more extreme flood events” in 29

basins. On the other hand, Mudelsee et al. (2003) analysed flood frequency in the Oder

and Elbe rivers and concluded that “although extreme floods with return periods of 100

year and more occurred in central Europe in July 1997 (Oder) and August 2002 (Elbe),

there is no evidence from the observations for recent upward trends in their occurrence

rate”. Kundzewicz et al. (2005) found varying results, with “increases, decreases as well

as no significant long-term changes in annual extreme flows” for a sample of 195 rivers

(Trenberth et al., 2007). The same ambiguity is present in projections of climate change

effects on flood frequency. The frequency of flood events is influenced by, among others,

precipitation intensity and the discharge regime, both of which might be affected by cli-

mate change. It is unclear, however, to what extent climate change will affect extreme

peak discharges, which under normal circumstances result in flood events. Climate mod-

els generally project changes in seasonal average discharge regimes of rivers, with higher

discharges in winter and lower discharges in summer (Te Linde et al., 2008). In addition,

these models project an overall decrease in precipitation in Europe, although flooding

may well become more frequent in summertime (Christensen and Christensen, 2003).

These types of projections, however, have to be used with care as they are not supported

by historic flooding trends (Helms et al., 2002; Mudelsee et al., 2003), are typically made

at scales that are larger than those relevant for decision-making (Towler et al., 2010),

and it remains difficult to link individual extreme weather events to a change in the

2



CICERO Working Paper 2012:01

climate (Kundzewicz, 2005; Trenberth et al., 2007).

Thus, there exists uncertainty about the impact of climate change on flood risk in river

basins. Therefore, the relevant question for decision-makers responsible for flood protec-

tion is how to deal with this uncertainty. In response to the 2002 flood, decision-makers

in the Elbe basin started to adapt their flood protection infrastructure. Relevant flood

protection measures were identified, including increased storage capacity in upstream

reservoirs and upgrading of the existing river dikes (De Kok and Grossmann, 2010).

The implementation of these measures remains uncertain, however, most likely because

this requires long-term political commitment (Petrow et al., 2006). In the Netherlands,

flood events in the Meuse and Rhine basins in the 1990s resulted in a similar upgrading

of the flood protection programme, although uncertainty about climate change effects

remains (Silva et al., 2004).

These examples illustrate that the relation between uncertainty and the timing of invest-

ments in flood protection measures presents decision-makers with a trade-off between

investing in flood protection today and postponing the decision. Because the effects of

climate change are uncertain, decision-makers are reluctant to invest in additional flood

protection measures, especially when the costs of these measures are irreversible. When

the timing of investment in flood protection measures is flexible, the investment deci-

sions may be postponed until more information about the effects of climate change has

arrived. The presence of both irreversibility and flexibility link this decision problem to

the theory of investment under uncertainty (Dixit and Pindyck, 1994).

Only few studies relate the risk of flooding in river basins to the implementation of adap-

tive protection measures. Fankhauser et al. (1999) assess efficient adaptation to climate

change-induced extreme events. Kundzewicz (2009) identifies flood protection and flood

preparedness measures to avoid adverse impacts for the Baltic Sea basin. De Bruin

et al. (2009) present an inventory and ranking of adaptation options for the water sector

in the Netherlands. Tol et al. (2003) discuss the impacts of climate change on flood

risks in the Netherlands and conclude that structural solutions that integrate land-use

planning and water management are better capable of dealing with climate change than

incidental solutions. The previous studies did not consider different adaptation measures

under climate change uncertainty. In this paper we address flood risk in river basins and

investment decisions in adaptation measures. We make a distinction between different

types of protection measures and model the resolution of climate change uncertainty.

Our objective is to show how climate change uncertainty affects the decision to invest in
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flood protection measures. We develop a model of optimal investment in flood protection

measures under climate change uncertainty. Such a model allows decision-makers to cope

with the uncertain impacts of climate change on the frequency and damage of river flood

events, while minimising the risk of under- or over-investment. Under-investment results

in a flood damage probability that is higher than optimal, while over-investment leads

to sunk costs and redundant flood protection capacity.

We adapt a model by Hennessy and Moschini (2006) on costly regulatory action under

scientific uncertainty to the case of flood protection. Our simplest model specification

is a discrete-state two-period model which provides a crude first decision-rule for invest-

ments. In subsequent sections, this model is extended to a continuous-state two-period

and three-period model, which allows us to analyse the effects of various model elements

on this decision-rule. One of these elements is the trade-off between investment in struc-

tural and non-structural measures, explained below. Another element is the resolution

of climate change uncertainty, which is modeled as a gradual process over time until full

resolution is reached. In the two-period model the initial investment decision can be

updated when full resolution of uncertainty is reached at an unknown future moment in

time. The three-period model allows for an intermediate investment decision under par-

tial resolution of uncertainty before the adjustment of the investment decision under full

resolution of climate change uncertainty, related to evidence on climate induced annual

flood damage. The motivation for studying gradual resolution of uncertainty is that over

time, additional evidence adds to the overall insight into these impacts, reducing their

uncertainty. Our results show that the effect of uncertainty on the investment decision

depends on the cost structure of the flood protection measures under consideration. To

be precise, a combination of the discount rate, climate change uncertainty, and the cost

structure of structural and non-structural measures determines the optimal mix of in-

vestments in these measures. A higher level of annual flood damage and later resolution

of uncertainty in time increases the optimal investment decision. Furthermore, the op-

timal investment decision today is influenced by the possibility of the decision-maker to

adjust his decision at a future moment in time.

One of the innovative elements of our paper is that we explicitly distinguish between two

categories of protection measures, which vary in their cost structure. The first category,

that we will refer to as structural measures, includes those measures that have high

fixed costs relative to annual costs. Examples are dike improvement and relocation.

The second category, that we will refer to as non-structural measures, includes those

measures that have low fixed costs relative to annual costs. Examples are the creation of
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retention areas to accommodate peak flows, and programmes to raise public awareness

on flood events. Note that our definition of structural and non-structural measures

is slightly different from the one used by for instance Kundzewicz (2002, 2009), see

Section 5. We will see that the inclusion of an intermediate decision moment where

partial resolution is observed induces lower investments in structural measures.

The paper is structured as follows. In Section 2 we introduce the basic elements of our

model to establish the optimal investment decision under uncertainty in a discrete two-

period model. In Section 3 we relax the discreteness assumption as to allow for a wide

range of possible climate change impacts as well as a continuous range of investment

in both structural and non-structural measures. In Section 4 we introduce a three-

period model, in order to analyse the effect of an intermediate investment decision under

partial resolution of uncertainty. The implications of the models for flood protection are

discussed in Section 5, followed by the conclusion in Section 6.

2 Discrete-state two-period model

In this section we present a simple discrete-state, two-period model, inspired by Hennessy

and Moschini (2006). We assume that the world knows two possible states α; either

climate change affects flood damage (α = 1) or it does not (α = 0). At time t = 0

there is uncertainty about which of the two states is the real state. State α = 1 has

probability q, and state α = 0 has probability 1 − q. This uncertainty will be resolved

at some unknown future time t = κ > 0, where κ is exponentially distributed with

f(κ) = he−hκ, such that E[κ] = 1/h, where h is the hazard rate. A lower value of h

implies that the expected resolution of uncertainty is further away in the future. An

exponential distribution is often used in the R&D literature to model the expected arrival

time of new information (Choi, 1991; Malueg and Tsutsui, 1997). It is a memoryless

distribution, which means that the probability of arrival of new information does not

depend on the arrival of past information. Following Hennessy and Moschini (2006),

we further assume that new information is free and the arrival date is considered to be

exogenous to the decision-maker.

The problem faced by the decision-maker is whether or not to make an irreversible and

costly investment in flood protection measures m, that suffices to prevent damage in case

α = 1. Two actions are possible: m = 1 denotes the decision to invest and m = 0 the

decision not to invest. In this section, we simplify matters by assuming that investment

induces a fixed and irreversible investment cost C and that the flood protection measure
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has an infinite lifetime. Annual costs of the flood protection measure c include for

instance opportunity costs (e.g. for land used as retention area) and maintenance costs

(e.g. for dike maintenance). Let Dmax denote maximum annual damage from climate

change over the period up to t = κ. Damage is for instance caused by overflow, where

at a certain location peak flow exceeds the critical height of the dike.

We assume that the decision-maker chooses the value of m that minimizes expected

costs. The discounted realised cost is denoted as R(m0, α, κ), where m0 is the selected

measure at time t = 0, α is the realized state of nature and κ is the time at which

uncertainty is resolved. Costs consist of investment (C) and annual costs (c) of the

implemented measure as well as damage costs D. For simplicity, α and m are the

result of the normalisation of the ratio of the increase of flood damage due to climate

change (A) and decrease of flood damage due to investment in flood protection measure

(M), both in monetary units, with the maximum annual flood damage (Dmax), where

α = A/Dmax, and m = M/Dmax.

t = 0 t = κ

m0 = 1

α = 1
R(m0 = 1,α = 1,κ)

α = 0 R(m0 = 1,α = 0,κ)

R(m0 = 0,α = 0,κ)

m0 = 0

α = 0

α = 1
R(m0 = 0,α = 1,κ)

Figure 1: Decision tree for the discrete-state two-period model.

The decision-maker may make two erroneous decisions (Figure 1). First, if the decision-

maker chooses m0 = 0 and it turns out that at t = κ, α = 1, he can revert his initial

decision and invest mκ = 1, while having incurred damage D over the period from t = 0

to t = κ. Second, if the decision-maker chooses m0 = 1 and it turns out that at t = κ,

α = 0, he cannot retrieve his initial investment (i.e. C is irreversible), but saves annual

costs c from time t = κ onward.

Costs are evaluated at t = 0 present values, using the continuous-time discount rate r.
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The decision node, represented as a square in Figure 1, indicates the decision to invest

or not to invest at t = 0. The information node, shown as a circle, indicates the

arrival of new information, in this situation leading to the full resolution of climate

change uncertainty. The outcome of each path through the decision tree is defined is

the discounted stream of costs for each specific path. The discounted realised cost is

a function of m0 and the random variables α and κ. The two random variables are

independent. The outcome of each path is specified as:

R(m0 = 1, α = 1, κ) = C +

∫ ∞
0

ce−rtdt

R(m0 = 1, α = 0, κ) = C +

∫ κ

0
ce−rtdt

R(m0 = 0, α = 1, κ) =

∫ κ

0
Dmaxe

−rtdt+ Ce−rκ +

∫ ∞
κ

ce−rtdt

R(m0 = 0, α = 0, κ) = 0 (1)

The expected cost of investing, E[R(m0 = 1)], and of not investing, E[R(m0 = 0)], can

be expressed as a function of the two random variables α and κ, where α is a discrete

random variable, and κ a continuous random variable.

E[R(m0 = 1)] =

∫ ∞
0

[qR(m0 = 1, α = 1, κ) + (1− q)R(m0 = 1, α = 0, κ)] f(κ)dκ

= C + q
( c
r

)
+ (1− q)

(
c

r + h

)
E[R(m0 = 0)] =

∫ ∞
0

[qR(m0 = 0, α = 1, κ) + (1− q)R(m0 = 0, α = 0, κ)] f(κ)dκ

= q

(
c

r
+
Dmax − c+ hC

r + h

)
(2)

Comparing the expected costs, investment at t = 0 is optimal if E[R(m0 = 1)] <

E[R(m0 = 0)], which is equivalent to q̄ < q, where:

q̄ =
c+ C(r + h)

Dmax + Ch
(3)

Because ∂q̄/∂C > 0 and ∂q̄/∂c > 0, investing at t = 0 is less likely if investment costs

(fixed and/or annual) are higher. When the expected resolution of uncertainty moves

closer in time (i.e. h increases) or the discount rate r increases, investing at t = 0 also

becomes less likely, as the decision-maker prefers to postpone the uncertain decision until

uncertainty is resolved. However, when the damage costs increase, investing at t = 0
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becomes more likely; the decision-maker faces higher expected costs when postponing his

investment decision. The results are intuitive and the model set-up is rather simple. For

instance, the uncertainty of climate change impacts on flood damage α should preferably

not be modeled as a draw from only two possible states of the world. Therefore, we

introduce state-continuity of this impact and other model features in the next section,

which also allows us to distinguish between investing in structural and non-structural

measures.

3 Continuous-state two-period model

The continuous-state model is derived by three major adjustments to the discrete model.

First, instead of the discrete set of states of nature α ∈ {0, 1}, we now assume a contin-

uum of states of nature α ∈ [0, 1], which has a density function f(α) over its domain. The

interval [0, 1] reflects the possible states of nature of how climate change affects expected

flood damage as explained below. As before, at t = 0 the value of α is unknown.

Second, we introduce structural measures s and non-structural measures n. These flood

protection measures serve to mitigate the increase of flood damage and thus the expected

flood damage caused by climate change. Instead of the discrete investment decision

m ∈ {0, 1}, we now assume a continuum of structural and non-structural flood protection

measures with s ∈ [0, 1] and n ∈ [0, 1], where s and n are the result of normalisation

such that s = 0 or n = 0 reflects no investment while s = 1 or n = 1 reflects maximum

investment. We assume that each combination of measures suffices to adapt to the

impacts of climate change if s + n ≥ α. This assumption implies that structural and

non-structural measures are additive, as in the case where dike heightening (structural

measure) is accompanied by an early-warning system (non-structural).

The variables α, s and n are the result of normalisation based on the variable A that

denotes the increase in potential flood damage due to climate change, and S and N that

denote the decrease of flood damage due to investment in structural and non-structural

measures, all defined in monetary units. These variables have been normalised by taking

ratios using the maximum annual flood damage (Dmax), which leads to s = S/Dmax,

n = N/Dmax, and α = A/Dmax. Thus the inequality S+N ≥ A is normalised by taking

ratios using the maximum annual flood damage, leading to s+ n ≥ α.

Costs of the measures reflect the differences between structural and non-structural mea-

sures as discussed in Section 1. Structural measures have irreversible fixed costs Css

and annual costs css. Similarly, non-structural measures have irreversible fixed costs

8



CICERO Working Paper 2012:01

Cnn and annual costs cnn. We assume Cs > Cn but cs < cn. Structural measures have

high fixed costs but low annual costs relative to non-structural measures. From this cost

structure we can derive that, in absence of uncertainty and for sufficiently low discount-

ing, structural measures are preferred over non-structural measures. Under uncertainty,

however, a decision-maker may want to diversify between structural and non-structural

measures in order to minimise total expected costs.

Third, instead of the fixed damage parameter Dmax, we now assume a damage function

D(α, s, n) that maps damage as a function of uncertain climate change impact α, miti-

gated by flood protection measures s+n. Recall that we assumed that each combination

of measures suffices to adapt to the impacts of climate change if s+n ≥ α, which leads to

zero damage costs. This assumption allows us to use the difference between α and s+n

in order to account for the mitigating effect of flood protection measures on damage.

These three adjustments to the discrete model allow us to model the decision-maker’s

decision in a similar way as was done for the discrete case described in Section 2. Again,

the decision-maker may make two erroneous decisions: First, if it turns out that at t = κ

the decision-maker has under-invested (i.e. s0 + n0 < α),1 he can upgrade his initially

implemented measures to the optimal level (i.e. to s0 +n0 +sκ+nκ = α), while incurring

the possible additional fixed costs Cssκ or Cnnκ, and increase of annual costs by cssκ or

cnnκ. Obviously, damage is incurred over the period from t = 0 to t = κ. Second, if it

turns out that at t = κ the decision-maker has over-invested (i.e. s0 +n0 > α), he cannot

retrieve his initial investment (i.e. Css0 and Cnn0 are irreversible), but he can reduce

his annual costs such that s0 + n0 + sκ + nκ = α from time t = κ onward. The interval

range for s0 and n0 is from [0, 1], and the interval range for sκ and nκ is from [−s0, 1]

and [−n0, 1]. The constraints sκ ≥ −s0 and nκ ≥ −n0 are imposed on the interval range

of sκ and nκ to indicate that in the case of over-investment at t = 0, a reduction of the

annual costs at t = κ cannot exceed the initial investment made at t = 0.

Figure 2 shows the decision tree for the continuous-state two-period model. The decision

problem is solved backward. The decision node (square) on the right indicates the

decision for sκ and nκ at t = κ when a combination of s0 and n0 has been chosen

and α is known (represented by the circular information node). We assume the optimal

adjustment of the investment decision under full resolution of uncertainty at t = κ,

where

sκ + nκ = α− s0 − n0 (4)

1Where necessary, we add a subscript t (t = 0 or t = κ) to s or n, in order to clarify the timing of
the investment.

9
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We first define the adjustment decision for the level of sκ and then, given this choice,

the investment level of nκ, where

nκ = α− s0 − n0 − sκ (5)

is set. This allows us to substitute nκ by α − sκ − s0 − n0, and therefore leave out the

term nκ in the decision tree and continuation of the model description. First, we solve

the decision-maker’s problem to choose sκ at time t = κ, when s0 and n0 have been

chosen and α is known. The decision for sκ is based on the minimisation over all possible

values of sκ (represented by a range of possible values from 1 to M) given the constraint

sκ ≥ −s0. Second, given the choice at t = κ, the optimal levels of s0 and n0 are selected

at t = 0. As we evaluate the costs from a t = 0 perspective, we consider a continuum of

α, as at t = 0 we do not know the exact value of α at t = κ. The continuum over α is

represented in Figure 2 by different regions to indicate how the combination of s0 and

n0 and the value of α affects the optimal choice at t = κ (see Figure 2).

The decision node on the left represents the objective of the decision-maker to choose

the combination of s0 and n0 in order to minimise the path outcome of the decision

tree, the discounted realised cost R(s0, n0, sκ, κ, α) that consists of damage, fixed and

annual costs of the flood protection measures. For each combination of s0 and n0 and

associated choice at t = κ, the discounted realised cost is derived. The superscripts in

Figure 2 and further equations indicate over which set of choices the discounted realised

cost is derived; the set of {s0, n0} combinations is defined from 1 to N . The set of

{s0, n0} combinations includes all combinations based on the interval range of s0 and

n0. The set for {sκ} ranges from 1 to M , and is based on the interval [−s0, α − s0].

The lower and upper bound of the interval are based on the constraint sκ ≥ −s0 and

nκ ≥ −n0, where the latter constraint can be rewritten in the following way. Note that

nκ ≥ −n0, by substituting nκ by Eq. 5, can be written as α−s0−sκ ≥ 0, which is equal

to α− s0 ≥ sκ, and presents the upper-bound of the interval for sκ.

3.1 Specific decision path

We now highlight a specific path of the decision tree that leads to the outcome Rij to

indicate how the discounted realised cost is derived. The stream of costs is discounted

for a specific {s0, n0}i, {sκ}j , α and κ. The discounted realised cost Rij is defined as

Rij = Ii0 +Di
0 + Iijκ (6)
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{s0,n0}1

{s0,n0}2

{s0,n0}i

{s0,n0}N‐1

{s0,n0}N

Rij

t = 0 t = κ

α = 1

α = 0

α = si0 + ni0

α = si0

{sK}1

{sK}2

{sK}j

{sK}M‐1

{sK}M

Figure 2: Decision tree for continuous-state two-period model.

which includes the discounted investment cost and discounted damage cost for the period

starting at t = 0 (Ii0 and Di
0) and the discounted adjustment cost for the period starting

at t = κ (Iijκ ).2 The damage cost from t = κ onwards is zero as we assume optimal

investment adjustment at t = κ. The discounted investment cost Ii0 is a function of a

combination of {s0, n0}i and random variable κ:

Ii0 = Css
i
0 + Cnn

i
0 +

∫ κ

0

(
css

i
0 + cnn

i
0

)
e−rtdt

= Css
i
0 + Cnn

i
0 +

(
css

i
0 + cnn

i
0

r

)
(1− e−rκ) (7)

The discounted damage cost Di
0 is a function of a combination of {s0, n0}i and random

variables κ and α:

Di
0 =

∫ κ

0
D
(
α, si0, n

i
0

)
e−rtdt

=
D
(
α, si0, n

i
0

)
r

(1− e−rκ) (8)

The discounted adjustment cost Iijκ is a function of {s0, n0}i, {sκ}j and random variables

2The superscript ij refers to a combination of {s0, n0}i and {sκ}j to calculate the discounted adjust-
ment cost for the period starting at t = κ.
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κ and α:

Iijκ =
(
Cs max

{
0, sjκ

}
+ Cn max

{
0, α− si0 − ni0 − sjκ

})
e−rκ

+

∫ ∞
κ

(
cs
(
si0 + sjκ

)
+ cn

(
α− si0 − sjκ

))
e−rtdt

=
(
Cs max

{
0, sjκ

}
+ Cn max

{
0, α− si0 − ni0 − sjκ

})
e−rκ

+
(cs
r

(si0 + sjκ) +
cn
r

(
α− si0 − sjκ

))
e−rκ (9)

Note that si0 + sjκ ≥ 0 and ni0 + njκ ≥ 0.

3.2 Optimal adjustment at t = κ

As we follow a backward procedure, the focus is first on the optimal adjustment decision

at t = κ, denoted as {sκ, nκ}jmin , which is defined as the decision where the discounted

adjustment cost is minimum, i.e. Iijminκ . Therefore, Iijκ is minimised over all possible

values of {sκ}j for a given {s0, n0}i and α.

We rewrite Eq. 9 as Iijκ = Aijκ e−rκ, where Aijκ represents the flow of fixed and annual

costs and is defined as

Aijκ = Cs max
{

0, sjκ
}

+ Cn max
{

0, α− si0 − ni0 − sjκ
}

+
cs
r

(si0 + sjκ) +
cn
r

(α− si0 − sjκ) (10)

The minimum Aijκ can be written as a function of C1 and C2, where C1 and C2 are defined

as:

C1 = Cs +
cs
r
− cn

r

C2 = Cs +
cs
r
− Cn −

cn
r

(11)

The magnitudes of C1 and C2 are determined by the value and ratio of the fixed and

annual cost elements between the structural and non-structural measure and the level

of the discount rate r.3

There are three possible combinations for C1 and C2, namely: (1) C1 < 0 and C2 < 0, (2)

C1 ≥ 0 and C2 < 0 and (3) C1 ≥ 0 and C2 ≥ 0. Note that the combination C1 < 0 and

C2 ≥ 0 is not valid, as C2 cannot be positive if C1 is negative, given that Cn > 0.

3We define Cs + cs/r as the fixed plus weighted annual cost. The weighted annual cost is the present
value of the infinite stream of annual costs.
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For each combination of C1 and C2, the minimum Aijκ is defined by how the level of α

relates to the investment decision made at t = 0, {s0, n0}i, i.e. if the decision-maker has

over- or under-invested. This can be summarized as follows:

1. C1 < 0 and C2 < 0

Aijminκ =


cs
r α 0 ≤ α ≤ si0
Cs(α− si0) + cs

r α si0 < α ≤ si0 + ni0
Cs(α− si0) + cs

r α si0 + ni0 < α ≤ 1

(12)

2. C1 ≥ 0 and C2 < 0

Aijminκ =


cs
r α 0 ≤ α ≤ si0
cs
r s

i
0 + cn

r (α− si0) si0 < α ≤ si0 + ni0
Cs(α− si0 − ni0) + cs

r (α− ni0) + cn
r n

i
0 si0 + ni0 < α ≤ 1

(13)

3. C1 ≥ 0 and C2 ≥ 0

Aijminκ =


cs
r α 0 ≤ α ≤ si0
cs
r s

i
0 + cn

r (α− si0) si0 < α ≤ si0 + ni0
Cn(α− si0 − ni0) + cs

r s
i
0 + cn

r (α− ni0) si0 + ni0 < α ≤ 1

(14)

Each combination of C1 and C2 marks a different adjustment strategy. Since C1 and C2

are a function of the discount rate (r), three regions of adjustment types can be defined

along the discount rate axis. This is shown in Figure 3 for the cases where the decision-

maker has over- and under-invested. r1 denotes the discount rate where C1 = 0, and

thus if r < r1 then C1 < 0. r2 denotes the discount rate where C2 = 0, and thus if r < r2

then C2 < 0. Investments in structural measures are indicated with a light gray bar,

and non-structural measures with a dark gray bar.

If C1 < 0 then Cs + cs
r < cn

r , i.e. the fixed cost plus the present value of an infinite

stream of the annual costs of the structural measure is smaller than the present value of

an infinite stream of the annual cost of the non-structural measure. Moreover, if C2 < 0

then Cs+ cs
r < Cn+ cn

r , i.e. the fixed plus weighted annual cost of the structural measure

is smaller than the fixed plus weighted annual cost of the non-structural measure. C2

determines the choice between structural and non-structural measures if the decision-

maker has under-invested at t = 0 and therefore an additional investment is required at

t = κ. C1 determines whether the non-structural measures are reduced if the decision-

maker has over-invested at t = 0 or if they are replaced by an investment in structural

measures.

For example, if C1 < 0 and C2 < 0 then the optimal adjustment decision at t = κ is to

13
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reduce the investment in the non-structural measures as much as possible, i.e. njκ = −ni0.

Moreover, if 0 ≤ α ≤ si0, the decision-maker has over-invested at t = 0. Even after

reducing the non-structural measures at t = κ, there is still an over-investment. The

structural measures are therefore reduced: sjκ = α − si0. Reducing structural measures

leads to a reduction in the annual costs, but it does not imply that the initial investment

is removed. If si0 < α ≤ si0 + ni0, the decision-maker has over-invested at t = 0. After

reducing the non-structural measures, an additional investment is however required to

avoid damages. He will invest in structural measures sjκ = α − si0. On the other hand,

if si0 + ni0 < α ≤ 1 the decision-maker has under-invested, there are damages incurred

up to t = κ. He will further invest only in structural measures sjκ = α − si0. Inserting

these conditions in Eq. 10 gives Eq. 12.

1/h=∞

r2

s=0 s≥0
n=0  n≥0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0‐n0
nκ= 0 

sκ= 0 
nκ= α‐s0‐n0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= 0
nκ= α‐s0‐n0

sκ= 0
nκ= α‐s0‐n0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0
nκ= ‐n0

r1 r2
1/h=0

(a) Over-invested: 0 ≤ α ≤ si0

1/h=∞

r2

s=0 s≥0
n=0  n≥0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0‐n0
nκ= 0 

sκ= 0 
nκ= α‐s0‐n0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= 0
nκ= α‐s0‐n0

sκ= 0
nκ= α‐s0‐n0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0
nκ= ‐n0

r1 r2
1/h=0

(b) Over-invested: si0 < α ≤ si0+ni0

1/h=∞

r2

s=0 s≥0
n=0  n≥0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0‐n0
nκ= 0 

sκ= 0 
nκ= α‐s0‐n0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= 0
nκ= α‐s0‐n0

sκ= 0
nκ= α‐s0‐n0

r1 r2

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0
nκ= ‐n0

sκ= α‐s0
nκ= ‐n0

r1 r2
1/h=0

(c) Under-invested si0 +ni0 < α ≤ 1

Figure 3: Three regions of adjustment types along the discount rate axis defined by C1 and C2
for the cases where the decision-maker has over- and under-invested.

3.3 Optimal decision at t = 0

With the optimal adjustment decision at t = κ known, the discounted realised cost in

Eq. 6 is rewritten as

Ri = Ii0 +Di
0 + Iijminκ (15)
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The discounted realised cost is a random variable as it is a function of the random

variables κ and α. To derive the optimal investment decision t = 0 we need to first

determine the expected value of Ri, which is defined as

E[Ri] = E[Ii0] + E[Di
0] + E[Iijminκ ] (16)

We solve Eq. 16 for the defined exponential distribution of κ, however we do not yet

solve for the probability distribution of α, as this probability density function may

have different shapes depending on the focus of the climate change impact (i.e. peak

discharge, sea-level rise, etc.). As we consider the random variables κ and α to be

independent random variables, the joint probability distribution of κ and α can be

written as the product of the probability distribution of κ and α (f(κ, α) = f(κ)f(α)).

The expected discounted investment cost (E[Ii0]) is a function of {s0, n0}i:

E[Ii0] =

∫ ∞
0

Ii0f(κ)dκ

= Css
i
0 + Cnn

i
0 +

(
1

h+ r

)
(css

i
0 + cnn

i
0) (17)

The expected discounted damage cost (E[Di
0]) is a function of {s0, n0}i:

E[Di
0] =

∫ 1

0

∫ ∞
0

Di
0f(κ)f(α)dκdα

=

(
1

h+ r

)∫ 1

0
D
(
α, si0, n

i
0

)
f(α)dα (18)

The expected optimal discounted adjustment cost (E[Iijminκ ]) is a function of {s0, n0}i

and the combination of C1 and C2:

E[Iijminκ ] =

∫ 1

0

∫ ∞
0

Aijminκ e−rκf(κ)f(α)dκdα

=

(
h

h+ r

)∫ 1

0
Aijminκ f(α)dα (19)

With Eq. 17 to 19, we can derive the optimal investment decision at t = 0 for a given

Cs, cs, Cn, cn, r, h, D and f(α). The optimal investment decision at t = 0 is denoted

as {s0, n0}imin , and is defined as the minimisation of the expected discounted realised
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costs, i.e. E[Rimin ],

E[Rimin ] = min
{
E[R1], ..., E[Ri], ..., E[RN ]

}
(20)

The decision maker will prefer an investment in structural measures to minimise the

expected discounted investment costs at t = 0 (E[Ii0]), if Ch2 < 0, which is defined as

Ch2 = Cs +
cs

h+ r
− Cn −

cn
h+ r

(21)

If Ch2 < 0, then the fixed cost plus present value of the annual costs up to the expected

waiting time for resolution of uncertainty is smaller for structural measures than for

non-structural measures. If the expected waiting time for resolution of uncertainty (1/h)

approaches infinity than, Ch2 approaches C2, defined in Eq. 11. Since Ch2 is a function of

the discount rate (r) and the expected waiting time for resolution of uncertainty (1/h),

two regions of investment types at t = 0 that minimise E[Ii0] can be defined in the plane

spanned by r and 1/h. This is shown in Figure 4. If 1/h = 0, only the fixed costs

are relevant. Since Cs > Cn, non-structural measures are preferred. As 1/h increases,

the contribution of the annual costs increases. Since cn > cs, non-structural measures

become less preferable.

The optimal investment decision at t = 0 that minimise E[Ri] will relate to the regions

defined by Ch2 in Figure 4 and by C1 and C2 in Figure 3. This will be illustrated by

numerical examples in the next section.

1/h=0

1/h=∞

r2

s=0 s≥0
n=0  n≥0

r1 r2=r6

sκ= 0 
nκ= α‐s0‐n0

Ks‐Kn=0

r1 r2

sκ= α‐s0
nκ=‐n0

sκ= α‐s0
nκ =‐n0

sκ= α‐s0
nκ =‐n0

r1 r2
r1 r2

sκ= 0 
nκ= α‐s0‐n0

r6Figure 4: Two regions of investment types at t = 0 that minimise E[Ii0]. Defined by Ch2
in the plane spanned by the discount rate (r) and the expected waiting time for resolution of

uncertainty (1/h).
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3.4 Numerical examples

In this section we further illustrate the continuous-state two-period model. A uniform

probability distribution for α and an increasing and concave damage function are ap-

plied. The damage function is given by:

D(α, s0, n0) =

{
Dmax

√
α− s0 − n0 α− s0 − n0 > 0

0 α− s0 − n0 ≤ 0

If α > s0 + n0, the decision-maker has under-invested and there are damage costs. A

motivation for this functional form is provided in Appendix A. The resulting expressions

for the expected discounted realised cost (Eq. 16, 17, 18 and 19) are programmed in

MATLAB, and minimised for a range of {s0, n0}i, given the constraints 0 ≤ si0 ≤ 1,

0 ≤ ni0 ≤ 1 and 0 ≤ si0 + ni0 ≤ 1.

Three examples will be presented to illustrate how the combination of C1 and C2 influ-

ences the optimal investment decision at t = 0. The absolute value of the cost function

parameters (Cs, Cn, cs, cn and Dmax) used in these examples are not important. It is

their relation that is of interest for this illustration. The optimal investment decision at

t = 0 will be presented for a range of plausible parameter values for r and h. Specifi-

cally, we assess results for the intervals r ∈ (0, 0.1] and h ∈ [0.01, 1]. The interval for r

implies that we check solutions for non-negative discount rates up to 10%. The interval

for h implies that we check solutions where the expected waiting time for resolution of

uncertainty is between 1 year and 100 years.

3.4.1 Example 1.

In the first example the cost function parameters are selected such that C1 < 0 (and

thus C2 < 0) for the complete range of r. For illustration, we chose the following values,

Cs = 1000 e, Cn = 500 e, cs = 150 e and cn = 250 e. We consider two values of Dmax,

namely 750 e and 1500 e, to demonstrate the effect of increasing maximum annual

flood damage on the optimal decision. Figure 5 and 6 present the resulting optimal

investment decision at t = 0 as function of r and h.

Since C1 < 0 and C2 < 0, the focus of the optimal decision at t = 0 will be on structural

measures. This can be seen in Figure 5. No investment in non-structural measures is

made at t = 0. Investing in non-structural measures becomes more desirable as damage

costs increase, as shown by Figure 6. The relatively high non-structural costs become

justifiable when the damages increase. The damage costs will be set to zero at the
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moment uncertainty is resolved (t = κ).

Moreover the results demonstrate that if 1/h increases the investment in structural

measures increases. When 1/h increases the expected waiting time for resolution of un-

certainty is longer, and accordingly the period of possible damages is longer. Therefore,

the investment in structural measures will increase to avoid a long period of possible

damages. This effect becomes smaller when the discount rate increases. If the discount

rate increases, future costs receive less weight, therefore the stream of damage costs

receives less weight, and the investment in structural measures will increase less. In-

vestment in structural measures increases stronger with lower discount rates and longer

expected waiting time for resolution of uncertainty.

The non-structural measures, on the other hand, increase first and then decrease again

if 1/h increases. This is related to the period of possible damages and the fact that non-

structural measures become optimal to minimize E[Ii0] for small 1/h. As the period of

possible damage increases, the relatively high non-structural annual costs become justi-

fiable. However, if this period further increases, the relative high annual non-structural

costs are no longer justifiable. It is better to increase the structural measures. If the

damages costs decreases it is not justifiable to invest first in non-structural measures

- although it is optimal to minimize E[Ii0] for small 1/h - as they will be reduced at the

moment uncertainty is resolved. This is reflected in Figure 5 and 6.
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Figure 5: Example 1. Optimal investment decision at t = 0 as a function of discount rate r
and hazard rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 150 e, cn = 250 e and Dmax = 750 e.

(Calculation based on step-size 0.001 for interval α.)
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Figure 6: Example 1. Optimal investment decision at t = 0 as a function of discount rate r
and hazard rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 150 e, cn = 250 e and Dmax = 1500 e.

(Calculation based on step-size 0.001 for interval α.)
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3.4.2 Example 2.

In the second example the cost function parameters are selected such that C1 < 0

and C2 < 0 for r ∈ (0, 0.05], defined as region 1 and C1 ≥ 0 and C2 < 0 for r ∈
[0.05, 0.1], defined as region 2. For illustration, we chose the following values, Cs =

1000 e, Cn = 500 e, cs = 150 e and cn = 200 e. Two values of Dmax are considered:

750 e and 1500 e. Figure 7 and 8 present the resulting optimal investment decision at

t = 0 as function of r and h.

The results demonstrate that the optimal investment decision at t = 0 is differently

related to r and h for the two regions. Similar characteristics as discussed in the first

example, are present for r ∈ (0, 0.05]. For r ∈ [0.05, 0.1], it can be observed that it

becomes more favorable to invest in non-structural measures as r increases. Moreover,

the optimal investment decision at t = 0 depends less on the 1/h as r increases.

If C1 ≥ 0 then Cs + cs
r ≥

cn
r , i.e. the fixed plus weighted annual costs of structural

measures are greater than or equal to the weighted annual costs of non-structural mea-

sures. If C2 < 0 then Cs + cs
r < Cn + cn

r , i.e. the fixed plus weighted annual costs of

structural measures are smaller than those of non-structural measures. For the optimal

decision at t = 0, these conditions imply that it is still favorable to invest in structural

measures. However, as the discount rate increases, the difference between the fixed plus

weighted annual costs of the structural and non-structural measures becomes smaller,

making non-structural measures justifiable to reduce the damages. Especially for shorter

periods of possible damages (smaller 1/h) this becomes justifiable (see Figure 4). If the

decision-maker has over-invested, the best is to reduce the non-structural measures (as

cn > cs) and let the structural measures unchanged (see Figure 3). Therefore, non-

structural measures at t = 0 are justifiable if the damage costs increase and the period

of possible damages is smaller, such that the annual costs can be limited. The second

region can be considered as a transition zone. This is illustrated by the next example.
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Figure 7: Example 2. Optimal investment decision at t = 0 as a function of discount rate r
and hazard rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 150 e, cn = 200 e and Dmax = 750 e.

(Calculation based on step-size 0.001 for interval α.)
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Figure 8: Example 2. Optimal investment decision at t = 0 as a function of discount rate r
and hazard rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 150 e, cn = 200 e and Dmax = 1500 e.

(Calculation based on step-size 0.001 for interval α.)
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3.4.3 Example 3.

In the third example the cost function parameters are selected such that C1 < 0 and

C2 < 0 for r ∈ (0, 0.025] (region 1), C1 ≥ 0 and C2 < 0 for r ∈ [0.025, 0.05] (region 2) and

C1 ≥ 0 and C2 ≥ 0 for r ∈ [0.05, 0.1] (region 3). For illustration, we chose the following

values, Cs = 1000 e, Cn = 500 e, cs = 175 e and cn = 200 e. Two values of Dmax are

considered: 750 e and 1500 e. Figure 9 and 10 present the resulting optimal investment

decision at t = 0 as function of r and h.

The results demonstrate that the optimal investment decision at t = 0 is different

related to r and h for these three regions. Similar characteristics discussed in the first

and second example, are present for r ∈ (0, 0.025] and r ∈ [0.025, 0.05], respectively.

For r ∈ [0.05, 0.1], it can be observed that it is favorable to invest in non-structural

measures.

If C1 ≥ 0 then Cs + cs
r ≥

cn
r , i.e. the fixed plus weighted annual costs of structural

measures are greater than or equal to the weighted annual costs of non-structural mea-

sures. If C2 ≥ 0 then Cs + cs
r ≥ Cn + cn

r , i.e. the fixed plus weighted annual costs of

structural measures are greater than or equal to those of non-structural measures. For

the optimal decision at t = 0, these conditions imply that it is favorable to invest in

non-structural measures. The relatively high structural costs become unjustifiable. If

the damages increase, the non-structural measures will further increase.
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Figure 9: Example 3. Optimal investment decision at t = 0 as a function of discount rate r
and hazard rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 175 e, cn = 200 e and Dmax = 750 e.

(Calculation based on step-size 0.001 for interval α.)
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Figure 10: Example 3. Optimal investment decision at t = 0 as a function of discount rate r
and hazard rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 175 e, cn = 200 e and Dmax = 1500 e.

(Calculation based on step-size 0.001 for interval α.)

23



CICERO Working Paper 2012:01

4 Continuous-state three-period model

In this section we expand upon the two-period model by considering an intermediate

decision moment at which there is partial resolution of climate change uncertainty. This

is a natural extension of our analysis given that the resolution of the uncertainty of

climate change impacts on river flow is a gradual process and the decision-maker will

have additional opportunities to adjust his initial investment decision. For the three-

period model, an investment decision is made at t = 0 and an adjustment decision,

under full resolution of climate change uncertainty, is made at an unknown future time

t = κ. This unknown future moment is equal to the full resolution moment in the

continuous-state two-period model, therefore κ has the same probability distribution,

i.e. an exponentially distributed with f(κ) = he−hκ, such that E[κ] = 1/h, where h

is denoted as the hazard rate. At an intermediate decision moment, defined as t = xκ

partial resolution of uncertainty is used to make an additional investment decision. Note

that x is a fraction, where x ∈ (0, 1). From todays perspective, this moment is unknown

as also t = κ is unknown. The decision-maker defines his investment strategy based

on the expected value t = κ and thus t = xκ, i.e. 1/h and x/h, respectively. If the

decision-maker sets x equal to 0.2 today, he will use the information about the partial

resolution of climate change uncertainty at 20% of the expected waiting time of full

resolution 1/h. Therefore, this model focuses on the effect of the use of intermediate

information.4

Figure 11 shows the decision tree for the continuous-state three-period model. The

decision problem is solved backward. The decision node on the far right indicates the

decision for sκ and nκ at t = κ when a combination of s0, n0, sxκ and nxκ has been

chosen and α is known, based on the reduced range of α resulting from partial resolution

of uncertainty (circular information node on the right). The decision node in the middle

of the decision tree indicates the decision for sxκ and nxκ at t = xκ when a combination

of s0 and n0 has been chosen and the probability distribution of α is updated based

on the received evidence range w (indicated by the two circular information nodes on

the left). The decision node on the left represents the objective of the decision-maker

to choose the combination of s0 and n0 in order to minimise the path outcome of the

decision tree.

In the following subsections, we will present a specific decision path of the decision tree

following a backward procedure. This includes the optimal adjustment at t = κ, the

4Note that the intermediate information is not used to update the expected time of full resolution.
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optimal decision at t = xκ and the optimal decision at t = 0. Next, the process of

gradual resolution of uncertainty that leads to an update of the prior distribution of α

for partial resolution of climate change uncertainty is explained. Furthermore, we show

that the continuous-state two-period model is a special case of the continuous-state

three-period model and present numerical examples.

t = 0 t = xκ

{sκ}1

{ }1

t = κ

{s0,n0}1

{s0,n0}2
Rijl

{sκ}2

{sκ}lα = 1

{sxκ,nxκ}1

{sxκ,nxκ}2w = 1
α = α

{s0,n0}i

{s0,n0}N‐1

{sκ}L‐1

{sκ}L

α = 0

{sxκ,nxκ}j

{sxκ,nxκ}M‐1

w = 0

α = α

{s0,n0}N

α 0
{sxκ,nxκ}M

w 0

Figure 11: Decision tree for continuous-state three-period model.

4.1 Specific decision path

We now highlight a specific path of the decision tree that leads to the outcome Rijl to

indicate how the discounted realised cost is derived. The stream of costs is discounted

for a specific {s0, n0}i, {sxκ, nxκ}j , {sκ}l, α, x and κ. The discounted realised cost Rijl

is defined as

Rijl = Ii0 +Di
0 + Iijxκ +Dij

xκ + Iijlκ (22)

which includes the discounted investment and damage cost from t = 0 up to t = xκ

(Ii0 and Di
0), the discounted adjustment and damage cost from t = xκ up to t = κ (Iijxκ

and Dij
xκ). Further, it includes the discounted adjustment cost for the period starting

at t = κ (Iijlκ ). The damage cost from t = κ onwards is zero as we assume optimal

adjustment at t = κ.

The discounted investment cost Ii0 is a function of {s0, n0}i and the random variable κ:

Ii0 = Css
i
0 + Cnn

i
0 +

∫ xκ

0

(
css

i
0 + cnn

i
0

)
e−rtdt

= Css
i
0 + Cnn

i
0 +

(
css

i
0 + cnn

i
0

r

)
(1− e−rxκ) (23)
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The discounted damage cost Di
0 is a function of {s0, n0}i and the random variables κ

and α:

Di
0 =

∫ xκ

0
D
(
α, si0, n

i
0

)
e−rtdt

=
D
(
α, si0, n

i
0

)
r

(1− e−rxκ) (24)

The discounted adjustment cost Iijxκ is a function of {s0, n0}i, {sxκ, nxκ}j and the random

variable κ:

Iijxκ =
(
Cs max

{
0, sjxκ

}
+ Cn max

{
0, njxκ

})
e−rxκ

+

∫ κ

xκ

(
cs(s

i
0 + sjxκ) + cn(ni0 + njxκ)

)
e−rtdt

=
(
Cs max

{
0, sjxκ

}
+ Cn max

{
0, njxκ

})
e−rxκ

+

(
cs
r

(si0 + sjxκ) +
cn
r

(ni0 + njxκ)

)
(e−rxκ − e−rκ) (25)

Note that si0 + sjxκ ≥ 0 and ni0 +njxκ ≥ 0. The discounted damage cost Dij
xκ is a function

of {s0, n0}i, {sxκ, nxκ}j and the random variables κ and α:

Dij
xκ =

∫ κ

xκ
D
(
α, si0, n

i
0, s

j
xκ, n

j
xκ

)
e−rtdt

=
D
(
α, si0, n

i
0, s

j
xκ, n

j
xκ

)
r

(e−rxκ − e−rκ) (26)

Finally, the discounted adjustment cost Iijlκ is a function of {s0, n0}i, {sxκ, nxκ}j , {sκ}l

and the random variables κ and α:

Iijlκ =
(
Cs max

{
0, slκ

}
+ Cn max

{
0, nlκ

})
e−rκ

+

∫ ∞
κ

(
cs
(
si0 + sjxκ + slκ

)
+ cn

(
ni0 + njxκ + nlκ

))
e−rtdt

=
(
Cs max

{
0, slκ

}
+ Cn max

{
0, α− si0 − ni0 − sjxκ − njxκ − slκ

})
e−rκ

+
(cs
r

(
si0 + sjxκ + slκ

)
+
cn
r

(
α− si0 − sjxκ − slκ

))
e−rκ (27)

Note that si0 + sjxκ + slκ ≥ 0 and ni0 + njxκ + nlκ ≥ 0.
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4.2 Optimal adjustment at t = κ

As we follow a backward procedure, similar to the continuous-state two-period model,

the focus is first on the optimal decision at t = κ, denoted as {sκ}lmin and is defined

as the minimisation of the discounted adjustment cost, i.e. Iijlminκ . Therefore, Iijlκ is

minimised over all possible values of {sκ}l for a given {s0, n0}i, {sxκ, nxκ}j and α.

Eq. 27 is rewritten as Iijlκ = Aijlκ e−rκ, where Aijlκ is a function of C1 = Cs + cs
r −

cn
r and

C2 = Cs+ cs
r −Cn−

cn
r . For each combination of C1 and C2, the minimum Aijlκ is defined

by how the level of α relates to the investment decision made at t = 0 and t = xκ,

{s0 + sxκ, n0 + nxκ}ij , i.e. if the decision-maker has over- or under-invested. This can

be summarized as follows:

1. C1 < 0 and C2 < 0

Aijlminκ =


cs
r α 0 ≤ α ≤ sij

Cs(α− sij) + cs
r α sij < α ≤ sij + nij

Cs(α− sij) + cs
r α sij + nij < α ≤ 1

(28)

2. C1 ≥ 0 and C2 < 0

Aijlminκ =


cs
r α 0 ≤ α ≤ sij
cs
r s

ij + cn
r (α− sij) sij < α ≤ sij + nij

Cs(α− sij − nij) + cs
r (α− nij) + cn

r n
ij sij + nij < α ≤ 1

(29)

3. C1 ≥ 0 and C2 ≥ 0

Aijlminκ =


cs
r α 0 ≤ α ≤ sij
cs
r s

ij + cn
r (α− sij) sij < α ≤ sij + nij

Cn(α− sij − nij) + cs
r s

ij + cn
r (α− nij) sij + nij < α ≤ 1

(30)

where sij = si0 + sjxκ and nij = ni0 + njxκ

If C1 < 0 and C2 < 0 then the optimal adjustment decision at t = κ is to reduce the

investment in the non-structural measures as much as possible, i.e. nlκ = −nij and

invest only in structural measures. Moreover, if 0 ≤ α ≤ sij the decision-maker has

over-invested and the structural measures are therefore reduced: slκ = α−sij . Reducing

structural measures leads to a reduction in the annual costs, but, it does not imply that

the initial investment is removed. On the other hand, if sij < α ≤ 1 the decision-maker

has under-invested, there are damages incurred and at t = κ, he will further invest

only in structural measures slκ = α − sij . Note that in all cases it is required that

−sij ≤ slκ ≤ α− sij because sij + slκ ≥ 0 and nij + nlκ ≥ 0.
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4.3 Optimal decision at t = xκ

With the optimal adjustment decision at t = κ known, the discounted realised cost in

Eq. 22 is rewritten as

Rij = Ii0 +Di
0 + Iijxκ +Dij

xκ + Iijlminκ

= Ii0 +Di
0 +Rj|i (31)

The focus is now on the optimal discounted cost at t = xκ (Rj|i), which is a random

variable as it is a function of the random variables κ and α. To derive the optimal

investment decision t = xκ we need to first determine the expected value of Rj|i, which

is defined as

E[Rj|i] = E[Iijxκ] + E[Dij
xκ] + E[Iijlminκ ] (32)

We consider the random variables κ and α to be independent random variable. The

random variable α is conditioned on evidence for α, i.e. w. The joint probability

function of Rj|i is therefore given by: f(κ, α|w) = f(κ)f(α|w).

The expected discounted investment cost (E[Iijxκ]) is a function of {s0, n0}i and {sxκ, nxκ}j :

E[Iijxκ] =

∫ ∞
0

Iijxκf(κ)dκ

=
h

(h+ xr)

(
Cs max

{
0, sjxκ

}
+ Cn max

{
0, njxκ

})
+

(1− x)h

(h+ xr)(h+ r)

(
cs(s

i
0 + sjxκ) + cn(ni0 + njxκ)

)
(33)

The expected discounted damage cost (E[Dij
xκ]) is a function of {s0, n0}i, {sxκ, nxκ}j

and evidence for α, i.e. w:

E[Dij
xκ] =

∫ 1

0

∫ ∞
0

Dij
xκf(κ)f(α|w)dκdα

=
(1− x)h

(h+ xr)(h+ r)

∫ 1

0
D
(
α, si0, n

i
0, s

j
xκ, n

j
xκ

)
f(α|w)dα (34)

The expected optimal discounted adjustment cost (E[Iijlminκ ]) is a function of {s0, n0}i,
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{sxκ, nxκ}j , evidence for α, i.e. w, and the combination of C1 and C2:

E[Iijlminκ ] =

∫ 1

0

∫ ∞
0

Aijlminκ e−rκf(κ)f(α|w)dκdα

=
h

h+ r

∫ 1

0
Aijlminκ f(α|w)dα (35)

With Eq. 33 to 35, we can derive the optimal adjustment decision at t = xκ for a given

{s0, n0}i, Cs, cs, Cn, cn, r, h, D, x, w and f(α|w). The optimal adjustment decision at

t = xκ is denoted as {sxκ, nxκ}ijmin , and is defined as the minimisation of the expected

discounted costs at t = xκ, i.e. E[Rjmin|i],

E[Rjmin|i] = min
{
E[R1|i], ..., E[Rj|i], ..., E[RM |i]

}
(36)

4.4 Optimal decision at t = 0

With the optimal decisions at t = κ and t = xκ known, the discounted realised cost in

Eq. 31 is rewritten as

Ri = Ii0 +Di
0 + E[Rjmin|i] (37)

The discounted realised costs is a random variable as Ii0 is a function of the random

variable xκ, Di
0 is a function of the random variables xκ and α and E[Rjmin|i] is a

function of the random variable w, as there is not one evidence, but a range of evidence

of α at t = xκ possible. To derive the optimal investment decision t = 0, we first

determine the expected value of Ri, which is defined as:

E[Ri] = E[Ii0] + E[Di
0] + E

[
E[Rjmin|i]

]
(38)

The expected discounted investment cost (E[Ii0]) is a function of {s0, n0}i:

E[Ii0] =

∫ ∞
0

Ii0f(κ)dκ

= Css
i
0 + Cnn

i
0 +

x

h+ xr
(css

i
0 + cnn

i
0) (39)

The expected discounted damage cost (E[Di
0]) is a function of {s0, n0}i:

E[Di
0] =

∫ 1

0

∫ ∞
0

Di
0f(κ)f(α)dκdα

=
x

h+ xr

∫ 1

0
D
(
α, si0, n

i
0

)
f(α)dα (40)
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The expected value of the minimum expected discounted costs at t = xκ is a function

of {s0, n0}i:

E
[
E[Rjmin|i]

]
=

∫ 1

0
E[Rjmin|i]f(w)dw (41)

With Eq. 39 to 41, we can derive the optimal investment decision at t = 0 for a given

Cs, cs, Cn, cn, r, h, D, x, f(w) and f(α). The decision is denoted as {s0, n0}imin , and

is defined as the minimisation of the expected discounted costs at t = 0, i.e. E[Rimin ],

E[Rimin ] = min
{
E[R1], ..., E[Ri], ..., E[RN ]

}
(42)

4.5 Gradual resolution of uncertainty

We further examine the probability functions f(α), f(w) and f(α|w), which are required

to define the optimal investment at t = 0. The conditional function of α, given a specific

value for the evidence w equals:

f(α|w) =
f(α,w)

f(w)
, where α ∈ [0, 1] and w is a constant (43)

The conditional probability is proportional to the joint probability function of α and w,

where evidence w is fixed to a specific value. Given this evidence w, α is more likely to

occur, i.e. the universe is reduced. Therefore the joint probability function is divided

by f(w), the probability of this specific evidence. f(w), also denoted as the marginal

distribution, is found by integrating the joint probability function over the whole range

of α:

f(w) =

∫ 1

0
f(α,w)dα (44)

We could reverse the role of α and w in Eq. 43. The conditional probability of w given

a specific value of α would be

f(w|α) =
f(α,w)

f(α)

which can be rewritten as: f(α,w) = f(w|α)f(α) (45)

30



CICERO Working Paper 2012:01

Substituting Eq. 44 and 45 into the definition of the conditional function of α, given a

specific value for evidence w, gives:

f(α|w) =
f(w|α)f(α)∫ 1

0 f(w|α)f(α)dα
, α ∈ [0, 1] and w is a constant (46)

Eq. 46 is known as Bayes’ theorem (Bolstad, 2007). Bayes’ theorem is used to revise

our beliefs of α on the basis of evidence w. f(α) is the prior distribution for α. It gives

the weight we attach to each value of α from our prior belief. f(w|α) is the likelihood

for α and is the conditional probability that a specific evidence w has occurred given

each value of α. Finally, f(α|w) is the posterior distribution for α. It gives the weight

we attach to each value of α after we have observed a specific evidence w. The posterior

thus combines our prior beliefs with the evidence given by the occurrence of w:

posterior =
likelihood× prior∫
(likelihood× prior)

(47)

4.5.1 Likelihood

The likelihood function that needs to be defined in a Bayesian framework, is based upon

an understanding of the evidence-generating process (Patwardhan and Small, 1992). We

need to evaluate the likelihood of a stream of evidence of climate induced annual flood

damages given a true state of climate induced annual flood damages. In general, we do

not directly obtain the stream of evidence of increased annual flood damages, because

we make associated observations, for example the annual peak discharges measured at

different measuring stations along rivers. The relationship between the associated ob-

servations and climate induced annual flood damages is defined by parametric models,

as shown in Figure 12. These parameters reflect the true state of the climate. Pat-

wardhan and Small (1992) explain the case of sea-level rise, where a relation is defined

between the long-term variation in global mean sea level change relative to a base year

and observations of relative sea level at different tide gauges stations around the world.

If such models were formulated, the likelihood of a stream of evidence of climate induced

annual flood damages given a true state of climate induced annual flood damages would

be defined by a Monte Carlo simulation of the model while varying the model parameters

for each possible true state of the climate.

For simplification we assume that the stream of evidence of climate induced annual flood

damages can directly be determined. The associated observations and the models are

therefore omitted. We denote the yearly determined evidence of climate induced annual
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Associated 
observations

Models
Evidence of 

climate induced 
annual flood damages

Model 
parameters

Figure 12: Relationship between the associated observations and climate induced annual flood
damages

flood damages as yρ. This evidence has a normal distribution with mean α (the true

state) and variance σ2, i.e.

f(yρ|α) =
1√
2πσ

e−
1

2σ2
(yρ−α)2 (48)

The variance reflects the degree to which we are able to determine climate induced

annual flood damage. This variance is in expected terms proportional to the expected

arrival time of full information, i.e. 1/h, and can be compared to a measurement error of

an instrument. The smaller the variance, the more accurate the instrument. Likewise,

the better our capabilities to determine the climate induced annual flood damage, the

shorter the expected arrival time of full information. Through investment in research we

can enhance our capabilities to reduce the variance, however in this model the variance

is constant thus no additional research costs are specified.

Every year we determine evidence of climate induced annual flood damages in a similar

way, but independently from each other. This results in a sample (database) y1, . . . , yP ,

after P years. Each evidence has the same normal distribution with mean α and variance

σ2, because the true state and our capabilities to determine evidence are considered to

be constant over time. The joint likelihood of this sample after P years is the product of

the individual likelihoods, because each evidence is independent of the other evidence.

Using Eq. 48 and introducing the mean of the sample ȳ = 1
P

∑P
ρ=1 yρ, gives:

f(y1, . . . , yP |α) =
1(√

2πσ
)P P∏

ρ=1

e−
1

2σ2
(yρ−α)2

=
1(√

2πσ
)P e− P

2σ2
( 1
P

∑
y2ρ−ȳ2)e−

P
2σ2

(α−ȳ)2

= K(y1, . . . , yP )e−
P

2σ2
(ȳ−α)2 (49)
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The posterior of α given the stream of evidence y1, . . . , yP , is accordingly (see Eq. 47):

f(α|y1, . . . , yP ) =
e−

P
2σ2

(ȳ−α)2f(α)∫ 1
0 e
− P

2σ2
(ȳ−α)2f(α)dα

(50)

Note that the constant K drops out of the equation. Further, it is noted that the

likelihood of α is proportional to the distribution of the sample mean (ȳ). The sample

mean (the sum of P independent normal distribution with mean α and variance σ2)

itself has a normal distribution with mean α but with variance σ̃2 = σ2

P . Therefore,

the posterior of α given the evidence ȳ after P years follows the same equation as the

posterior of α given the stream of evidence y1, . . . , yP .

Finally, the sample mean after xκ years is denoted as w. Therefore, Eq. 46 becomes:

f(α|w) =
e−

1
2σ̃2

(w−α)2f(α)∫ 1
0 e
− 1

2σ̃2
(w−α)2f(α)dα

, α ∈ [0, 1] and w is a constant (51)

Full resolution of uncertainty is obtained when σ̃2 7→ 0. This would happen when we

determine evidence for infinity, P 7→ ∞. However, it is considered that at t = κ, σ̃

becomes small enough in order to be considered as full resolution. This threshold is

indicated by δ, thus at t = κ, σ̃ = δ. The variance of the sample mean after xκ years,

can therefore be defined as

σ̃2 =
σ2

xκ

=
δ2κ

xκ
, x ∈ [0, 1] (52)

As mentioned before, the variance of the evidence determined in year ρ, is proportional

to the year in which full resolution is considered (up to δ), i.e. σ2 ∝ κ. In expected

terms this implies that E[σ2] ∝ E[κ], which equals 1/h. This reflects the degree to

which we are able to determine evidence of climate induced annual flood damage.

The posterior of α as function of three different observation moments xκ is illustrated

in Figure 13 for evidence w = 0.3. Note that the prior of α is uniformly distributed,

where no value is favored over any other. The posterior is shown for x = 0.1, x = 0.5

and x = 0.9, and δ = 0.025. It shows that the posterior of α gradually reduces. For

example, if the expected arrival time of full information (1/h) is set at 50 years, then

already after 5 years there is a considerable reduction in uncertainty. In the decision

tree (Figure 11) this reduced area is indicated by α ∈ [α, α].
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In this study, one intermediate decision moment, t = xκ is considered where 0 < x < 1.

At t = 0, the distribution of α is given by the prior. At t = κ, the distribution of α is

not given by the posterior defined in Eq. 51 because full resolution is assumed in the

model. This is represented by the assumption that nκ = α− s0−n0− sxκ−nxκ− sκ at

full resolution of uncertainty. The posterior formulated in Eq. 51 is therefore only used

for the intermediate decision moment. As a consequence δ can be increased in order to

obtain a posterior with higher variance at t = xκ, without affecting the distribution of

α at t = κ.

The evidence w at t = xκ is used to update our prior belief about α and to make

an intermediate adjustment decision. This procedure at t = xκ is called a posterior

analysis. However, from the viewpoint at t = 0 different observations are possible at

t = xκ. Therefore, E[Rjmin|i] becomes a random variable as w becomes a random

variable from our viewpoint t = 0. This procedure at t = 0 is called the pre-posterior

analysis.
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0

5

10

15

α (−)

f(α
|w

) (
−)

x = 0.1

0 0.2 0.4 0.6 0.8 1
0

5

10

15

α (−)

f(α
|w

) (
−)

x = 0.5

0 0.2 0.4 0.6 0.8 1
0

5

10

15

α (−)

f(α
|w

) (
−)

x = 0.9

Figure 13: Posterior of α as function of three observation moments xκ for evidence w = 0.3

4.5.2 The continuous-state two-period model, a special case

There is a gradual resolution of uncertainty both in the two-period and the three-period

model. The difference between the two models is that in case of the three-period model,

we make use of the partial resolution of uncertainty at t = xκ to adjust the investment

decision. Therefore, forcing {sxκ = 0, nxκ = 0} in the three-period model, i.e. making

no investment at t = xκ, should result in the same optimal investment at t = 0 as for

the two-period model. This can be shown in the following way.

It is shown that Eq. 38 equals Eq. 16 if {sxκ = 0, nxκ = 0}. The expected value of the

minimum expected discounted cost at t = xκ is first specified using Eq. 41, 33, 34 and 35.
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Note that superscript j0 indicates that no investment is made at t = xκ.

E
[
E[Rjmin|i]

]
=

∫ 1

0

(
E[Iij0xκ ] + E[Dij0

xκ ] + E[Iij0lminκ ]
)
f(w)dw (53)

=
(1− x)h

(h+ xr)(h+ r)

(
css

i
0 + cnn

i
0

)∫ 1

0
f(w)dw

+
(1− x)h

(h+ xr)(h+ r)

∫ 1

0

∫ 1

0
D
(
α, si0, n

i
0

)
f(α|w)f(w)dαdw

+
h

h+ r

∫ 1

0

∫ 1

0
Aij0lminκ f(α|w)f(w)dαdw

Next we change the order of integration in Eq. 53. First we integrate to w for a fixed

α, resulting in the marginal distribution of α i.e.∫ 1

0

∫ 1

0
D
(
α, si0, n

i
0

)
f(α|w)f(w)dαdw =

∫ 1

0
D
(
α, si0, n

i
0

) ∫ 1

0
f(α|w)f(w)dwdα

=

∫ 1

0
D
(
α, si0, n

i
0

)
f(α)dα

Further, note that
∫ 1

0 f(w)dw = 1 and that Aij0lminκ is equal to Aijminκ in Eq. 12 to 14 of

the two-period model. Therefore, Eq. 53 becomes:

E
[
E[Rjmin|i]

]
=

(1− x)h

(h+ xr)(h+ r)

(
css

i
0 + cnn

i
0

)
+

(1− x)h

(h+ xr)(h+ r)

∫ 1

0
D
(
α, si0, n

i
0

)
f(α)dα

+
h

h+ r

∫ 1

0
Aijminκ f(α)dα (54)

Substituting this back in Eq. 38 and combining this with Eq. 39 and 40, gives the

following equation for the expected discounted realised cost Ri:

E[Ri] = Css
i
0 + Cnn

i
0 +

( x

h+ xr
+

(1− x)h

(h+ xr)(h+ r)

)(
css

i
0 + cnn

i
0

)
+
( x

h+ xr
+

(1− x)h

(h+ xr)(h+ r)

)∫ 1

0
D
(
α, si0, n

i
0

)
f(α)dα

+
h

h+ r

∫ 1

0
Aijminκ f(α)dα (55)

As x
h+xr + (1−x)h

(h+xr)(h+r) = 1
h+r , the expected discounted realised cost in the three-period

model with {sxκ = 0, nxκ = 0}, is equal to the expected discounted realised cost in two-
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period model, given in Eq. 16 with Eq. 17, 18 and 19.

4.6 Numerical examples

We illustrate the three-period model using the same cost function parameters as in

example 2 in Section 3.4 (Figure 7 and 8), where Cs = 1000 e, Cn = 500 e, cs = 150 e,

cn = 200 e and two values of Dmax, 750 e and 1500 e. Due to the similar cost

structure, similar regions are present in Figure 14 to 17, where C1 < 0 and C2 < 0 for

r ∈ (0, 0.05] is defined as region 1 and C1 ≥ 0 and C2 < 0 for r ∈ [0.05, 0.1] is defined

as region 2. For region 1, this implies that structural measures are preferred over non-

structural measures. The non-structural measures first increase and then decrease if

1/h increases. As the period of possible damages increases, the relatively high annual

non-structural costs become justifiable. However, as this period further increases, the

relative high annual non-structural costs are no longer justifiable. It is better to increase

the structural measures. In region 2 it is still favorable to invest in structural measures.

However, non-structural measures are justifiable to reduce the damages if the discount

rate increases. The optimal investment decision depends less on the 1/h as r increases.

In the three-period model we introduce an intermediate decision moment (t = xκ),

where partial resolution of uncertainty is used. The decision-maker sets the fraction x,

which sets the moment at which partial resolution is used, relative to the moment of

full resolution of uncertainty. We illustrate two different intermediate decision moments,

namely x = 0.1 and x = 0.5 for a given expected value of the variance σ2, i.e. δ2/h.

The variance reflects the capacity to collect evidence to reduce the domain of the prior

distribution and is therefore proportional to the moment of full resolution of uncertainty.

With x = 0.1 the moment at which partial resolution of uncertainty is used, is set at 10%

of full resolution of uncertainty and with x = 0.5 at 50%. Figure 13 shows the posterior

distribution of α as a function of three different observation moments with δ = 0.025 for

a constant evidence w. From the t = 0 perspective we consider a continuum of w, as at

t = 0 we do not know the exact value of the evidence that will be made at this future

time instant.

Figure 14 and 15 present the resulting optimal investment decision at t = 0, for x = 0.1

as function of r and h. When compared to Figure 7 and 8 of the two-period model it

is noted that the total investment in structural and non-structural measures decreases.

The intermediate adjustment of the initial investment decision based on reduced area

α ∈ [α, α], reduces the stream of possible future damages, therefore at t = 0 with full

uncertainty, there is no need to over-invest as in the near future information becomes
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available. With low discount rates and smaller 1/h, there is less investment in non-

structural measures as future annual costs receive more weight. With high discount

rates and larger 1/h, investment in non-structural measures increases and structural

measures decreases. This is due to the high fixed investment costs of the structural

measures compared to the non-structural fixed investment costs, and future annual costs

receive less weight, which makes investment in non-structural measures more justifiable.

When the damage costs increase, with a low discount rate structural measures are

still preferred over non-structural measures. However, when the expected resolution

of uncertainty increases, investment in non-structural measures becomes justifiable as

the period of possible damage increases. When the period of possible damages further

increases (larger 1/h), the high annual costs of the non-structural measures receive more

weight, this leads to a reduction of non-structural measures and an increase in investment

in structural measures. When the damage costs increase, the transition of investment in

non-structural measures, at low discount rates, shifts upwards as the level of damages

does not justify investment in non-structural measures.

When we consider the intermediate decision moment at t = 0.5κ, and compare Figure 16

and 17 with Figure 7 and 8, there is considerably less difference. With x = 0.5 partial

resolution of uncertainty is used at 50% of the expected full resolution of uncertainty. At

this intermediate time instant we have a posterior distribution that has a smaller reduced

area α ∈ [α, α], indicating less uncertainty, thus we have a more optimal adjustment of

the initial investment decision than when x = 0.1. However, we only benefit from this

adjustment for a short period, the period of reduced damages is shorter. Figure 16

and 17 show that the latter effect dominates, as the shrinking domain is less important

than the moment at which the partial resolution of uncertainty is used. The time to

the moment at which the partial resolution is used, is much longer, therefore the initial

investment decision does not differ much from the initial investment decision in the

two-period model. For a given σ (and thus δ and 1/h), which relates to the capacity to

collect evidence to reduce the domain of the prior distribution, the decision-maker can

influence the timing of the intermediate investment decision through the selection of x.

This choice impacts the level of reduced damages, which depends on the timing of the

intermediate decision and associated level of partial resolution. When the decision-maker

can influence the level of σ through additional research, there is a trade-off between the

cost of additional research and the level of reduced damages.

In this particular illustration we note that using the partial resolution at 10% of 1/h

already leads to a considerable reduced domain α ∈ [α, α]. This is due to the value of δ,
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where δ = 0.025 means that already at 10% of 1/h a large part of uncertainty is resolved.

This is shown in Figure 13, where the prior distribution of α is uniformly distributed

and the posterior of α for x = 0.1 already has a considerable reduced domain.
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Figure 14: Optimal investment decision at t = 0 as a function of discount rate r and hazard
rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 150 e, cn = 200 e, Dmax = 750 e and x = 0.1, the

calculation is based on step-size 0.01 for interval α.
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Figure 15: Optimal investment decision at t = 0 as a function of discount rate r and hazard
rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 150 e, cn = 200 e, Dmax = 1500 e and x = 0.1,

the calculation is based on step-size 0.01 for interval α.)
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Figure 16: Optimal investment decision at t = 0 as a function of discount rate r and hazard
rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 150 e, cn = 200 e, Dmax = 750 e and x = 0.5, the

calculation is based on step-size 0.01 for interval α.
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Figure 17: Optimal investment decision at t = 0 as a function of discount rate r and hazard
rate (1/h). Cs = 1000 e, Cn = 500 e, cs = 150 e, cn = 200 e, Dmax = 1500 e and x = 0.5,

the calculation is based on step-size 0.01 for interval α.

40



CICERO Working Paper 2012:01

5 Implications for flood management

In this section we discuss the implications of the model outcome for decision-making in

flood management. We first relate our model results to real-world decision making in

flood protection. In the second part of this section we discuss four biases that could

occur in flood protection decision-making and show their implications in the context of

our model results.

5.1 Decision-making

Our definition of structural and non-structural measures—based on their ratio of fixed

costs relative to annual costs—is slightly different from the one used by for instance

Kundzewicz (2002, 2009). In this more general interpretation structural measures refer

to engineering solutions (e.g. dikes, dams, reservoirs, diversions, channels, flood-ways),

while non-structural measures refer to legislation, regulatory, and institutional solutions

(e.g. watershed and landscape management, laws and regulations, zoning, economic in-

struments, and early warning systems). Although engineering solutions often induce

relatively large fixed costs, this may not hold for all engineering solutions. A similar

observation can be made with respect to regulatory and institutional solutions. Hence,

while largely overlapping, the two definitions are not identical. Our definition of struc-

tural measures makes it possible to rank any set of measures according to their cost

structure, where one engineering solution can be considered more structural than an-

other (implying that it has a higher fixed-to-annual-costs ratio).

Over the last decades, flood management has shown a shift from structural to non-

structural approaches. In many cases, decision-makers have decided to invest in a mix

of both structural and non-structural measures. In the UK case, for instance, Penning-

Rowsell et al. (2006) discuss such a gradual shift in flood management policy through

the 20th century. This shift from structural flood defense to flood risk management was

stimulated by two major flood events in 1998 and 2000 (Tunstall et al., 2009). Although

it is impossible to foresee future policy changes, Penning-Rowsell et al. (2006) predict

a “greater reliance on a location-specific mix of non-structural and people-centred flood

mitigation actions, and lessening of the influence of traditional approaches”.

A similar shift has occurred in many other countries and basins, of which we mention

two. In Germany, after the 2002 floods in the Elbe, new concepts for flood protection

measures were developed, which included a combination of structural and non-structural

measures. These non-structural measures were said to focus on the prevention and
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mitigation of the impact of floods (Petrow et al., 2006). In Canada, flood management

reform was also triggered by major flood events. In this context, De Loë (2000) states

that “responses to the flooding problem have evolved in Canada from an emphasis on

controlling ‘water out of place’ through structural measures such as dams and dikes,

to managing human behaviour using zoning to keep development away from hazardous

areas.”

The model shows that if climate change uncertainty is present, then non-structural

measures become a more attractive option for flood protection. This shift in flood man-

agement is ongoing in many countries. There is increasing attention for non-structural

measures in flood protection policy. Non-structural measures are often more flexible, less

committing, and more sustainable (Kundzewicz, 2002). These characteristics are impor-

tant, especially in the current context of uncertain impacts of climate change on flood

damage, as discussed in Section 1. Both the flexibility and the commitment argument

put forward by Kundzewicz (2002) show up as the key factors for investment decisions

in our model setting. In the examples listed above (Germany, UK, Canada), the effects

of climate change have entered the discussion on flood protection decision-making.

In conventional analyses of decision-making on flood protection, the role of uncertainty

has often been ignored. Brouwer and Van Ek (2004), for instance, analyse several flood

protection options in the context of a Dutch case study. They assess the trade-offs

between costs and benefits of three policy measures (dike heightening, land use change

and floodplain restoration), and conclude that the preference for one of these mea-

sures depends on the value attached to future ecological and socio-economic benefits.

They do not, however, consider how uncertainty would affect the attractiveness of these

measures. Current Dutch flood protection policies encompass a mix of structural and

non-structural measures, and the public debate on protection from flood events revolves

around the uncertainty of future flood events due to climate change. Without a doubt

this uncertainty affects the optimal investment decision. Rosenberg et al. (2010) argue

that for investments in storm-water infrastructure “the range of predicted change...is

much too large to provide a basis for engineering design”. This statement implies that

when the impacts of climate change are uncertain, no sound investment decision in flood

protection can be made. The results from our model, however, show that in the presence

of uncertainty about the range of predicted climate change, it is possible to determine

the optimal investment decision, where the prior distribution of α represents the prior

knowledge of the decision-maker. A uniform distribution was implemented to indicate

that no value is favored over any other. Furthermore, waiting for new information about
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climate change impacts, which reduces uncertainty, does not imply a complete postpone-

ment of the investment decision today. Depending on the level of uncertainty, though,

structural or non-structural measures may be preferred. Specifically, our model results

show that the decision-maker’s preference for structural and non-structural measures

depends on the combination of the cost structure of these measures, the level of the

discount rate and uncertainty due to climate change.

An additional factor that may lead to a preference for non-structural measures is the

short horizon of decision-makers in many institutional contexts. There is a disincentive

to invest in structural measures if most benefits of these investments will only occur

over a very long time horizon. Non-structural measures are more profitable in the short

run, in terms of lower investment costs and may therefore provide a politically feasible

alternative to structural measures.

5.2 Possible biases of decision-makers

The results of the three models developed in Sections 2–4 suggest that decision-makers

may be biased in four ways. A first bias is that decision-makers could mistakenly assume

a discrete set of states of nature (true or false) and ignore the continuous character of

these impacts. The consequences of this bias can be analysed using the models of

Sections 2 and 3. Clearly, if climate change is either true or false, this implies that

the decision-maker assumes that either α = 0 or α = 1, while in fact the full range of

values α ∈ [0, 1] is possible. This constraint on values of α gives more weight to the

two extreme values in the initial decision to invest. Due to concavity of the damage

function this leads to lower expected damages. Hence, this bias causes decision-makers

to under-invest.

A second bias is related to the damage function and is discussed by Petrow et al. (2006)

in the context of flood protection in the Elbe basin. They find that decision-makers in

the Elbe basin have focused too much on one possible flood scenario, corresponding to

the area affected by a 100-year return period flood. In the context of our model, decision-

makers may assume one damage estimate corresponding to one particular value of α,

instead of considering the full range of possible damage depending on the full range of

possible climate change impacts. The result of this bias is similar; it leads to under-

investment in flood protection measures.

A third bias occurs when decision-makers consider only one measure instead of a set of

possible structural and non-structural measures. Each combination of the discount rate

and climate change uncertainty implies a different optimal investment combination, as
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can be seen from the continuous models in Sections 3 and 4. Ignoring one (or more)

measures would yield a sub-optimal investment decision. Whether this implies too

much or too little investment in structural or non-structural measures depends on the

set of measures considered, as well as their cost structure. Our model results show

that ignoring one or more measures distorts the interplay between structural and non-

structural measures that is required for optimal investment.

A fourth and last bias is the incorrect assumption that uncertainty will be resolved

at once at a future date, while in reality this resolution is likely to be gradual. The

difference in results between Sections 3 and 4 illustrates the implications of this bias.

The optimal mix of structural and non-structural measures is affected by this bias. The

option of adjusting the investment decision when more information arrives induces lower

initial investments, however this depends on the timing of the intermediate investment

moment and the level of partial resolution revealed.

6 Conclusion

Climate change uncertainty affects the decision to invest in flood protection measures.

The model developed in this paper shows how an optimal investment strategy in flood

protection measures reduces the risk of under- or over-investment to the decision-maker.

Our results confirm the argument of Kundzewicz et al. (2010), who state that “flood pre-

paredness (adaptation) measures should consist of an optimal, site-specific, mix from the

menu of structural and non-structural measures”. We provide a theoretical foundation

for this argument using a model of decision-making under uncertainty. A combination

of the discount rate, climate change uncertainty, and the cost structure of structural

and non-structural measures determines the optimal mix of investments in these mea-

sures. Our model results predict that if climate change uncertainty is present, then

non-structural measures become a more attractive option for flood protection.

The results from our continuous-state two-period model show that the level of the op-

timal mix of the structural and non-structural measures is affected by the level of the

maximum annual flood damage and the expected arrival time of full resolution. If maxi-

mum annual flood damage and the expected arrival time of full resolution of uncertainty

increases, this leads to longer periods of possible damages, which increases the level of

the optimal mix of flood protection measures. The proportion of structural and non-

structural measures in the optimal policy is affected by the cost structure, discount rate

and expected arrival time of full resolution of climate change uncertainty. If the discount
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rate increases, this puts less weight on future costs, which decreases the investment in

structural measures and increases in non-structural measures.

In the three-period model, the inclusion of an intermediate decision moment, where

partial resolution of uncertainty is observed, leads to lower investments in structural

and non-structural measures. However, the level of reduced damages is impacted by

the timing of the intermediate investment moment and the level of partial resolution

revealed. If the intermediate investment decision is in the near future, only little evidence

is collected to update the prior distribution, thus only little knowledge about the true

state is revealed. Still the investment decision can be updated to reduce the stream of

possible future damages, therefore the initial investment decision is lower in anticipation

of the intermediate decision moment. If the intermediate investment decision is later

in time, more evidence is collected and the posterior distribution has a smaller range,

which comes closer to full resolution of uncertainty. However, as the period between the

initial investment moment and the intermediate moment is longer, the period of possible

damages is longer, thus a higher level of initial investment will be justified compared

to early partial resolution of uncertainty. When the decision-maker is able to increase

the capacity to reduce climate change uncertainty through additional research, there is

a trade-off between the cost of research and the level of reduced damages.

Thus, we conclude that the optimal investment decision today depends strongly on the

cost structure of the adaptation measures and the discount rate, especially the ratio

of fixed and weighted annual costs of the measures. We define the optimal investment

decision today as a specific mix of measures that minimizes the total expected net cost. A

higher level of annual flood damage and later resolution of uncertainty in time increases

the optimal investment decision. Furthermore, the optimal investment decision today

is influenced by the possibility of the decision-maker to adjust his decision at a future

moment in time.

Although we have used river flooding as our motivating example, the results of this

paper may apply more widely. A relevant application is coastal areas where climate

change induces uncertain sea-level rise and related flood events. Again, different types

of measures can be considered, that vary in their cost structure. Examples are dike

heightening, beach nourishment, and restrictions on development and land use.

One possible extension to our model relates to the distinction between structural and

non-structural flood protection measures. In this paper, we distinguished between the

two based on their cost structure only, so that the measures are perfect substitutes.

45



CICERO Working Paper 2012:01

Alternatively, the measures can be modeled as imperfect substitutes or as partly com-

plementary, so that the interplay between the two measures is taken into account.
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Appendix A

A motivation for the functional form of the function D(α, s, n), introduced in Section 3

is the following. Consider the capacity of existing flood protection measures to be based

on a known Gumbel distribution for peak flow discharge. The Gumbel distribution is a

commonly used distribution for the modeling of peak river flow. Its probability density

function is

g(w;µ, β) =
z exp(−z)

β
with z = exp

[
w − µ
β

]
, (56)

where w denotes peak discharge, β is the scale parameter and µ is the location parameter.

Without loss of generality, we assume that climate change affects the scale parameter

only, by scaling β by (1 + αγ), with γ > 0, such that (1 + αγ)β ≥ β.5 Climate change

leads to an increase of the scale parameter, implying ‘fatter tails’ in the distribution of

peak discharge. This corresponds to evidence on increased variance of peak river flow

(IPCC, 2007). The maximum increase in the scale parameter depends on the level of γ,

i.e. if γ = 1 the scale parameter is doubled at maximum. We assume that there is at

maximum one flood per year, correlating to that year’s peak discharge. In year t, peak

discharge w causes a flood if w > w, where w denotes the maximum capacity provided

by current protection measures. Damage from floods is increasing and concave in w−w,

so that we have the following damage function:

h(w,w) =

{
λ(w − w) if w > w ,

0 otherwise,

where λ(w−w) is increasing and concave. Expected damage D in a given year can now

be calculated as the integral of the damage function over the Gumbel distribution of w

(whose scale parameter is affected by α):

D =

∫ ∞
0

[h(w,w)] g(w)dw. (57)

5Alternatively we could have modified the location parameter µ so that average peak discharge
increases and thereby the probability of extreme peak discharges. Under our model assumptions, both
methods lead to a similar—concave—relation between α and D.
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Recall that we assumed that each combination of measures suffices to adapt to the

impacts of climate change if s + n ≥ α. This assumption allows us to use the dif-

ference of α and s + n in order to account for the mitigating effect of flood protec-

tion measures on damage. Hence we summarise the relation between climate change

impact α, flood protection measures s + n, and expected damage D in the function

D(α, s, n) = Dmax
√
α− s− n, that is increasing and concave in (α − s − n), with

D(α− s− n ≤ 0) = 0.6

6This requires that the damage function λ(w − w) is sufficiently concave.
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